Answer
Verified
492.3k+ views
Hint: In this question first of all we have to know the basics of algebra like in this question we should know that roots of equations are equal to zero if put them in variables by this concept we will able to solve half the question then we should also know the elimination method of linear equations in two variables also we should know about the relation of zeros in cubic polynomial by these simple things you should be able to find the solution.
Complete step-by-step answer:
To find ‘m’ and ‘n’, we will put the values of zeros of the equation in the place of ‘x’ and then equate the equation to zero.
$ \Rightarrow $ 2 and 3 are the zeros of the given equation $2{x^2} + mx - 13x + n$
Case 1
$
f(2) = 2{(2)^3} + m{(2)^2} - 13(2) + n = 0 \\
\Rightarrow 16 + 4m - 26 + n = 0 \\
\Rightarrow 4m + n = 10{\text{ }}......\left( 1 \right) \\
$
Case 2
$
f\left( 3 \right) = 2{(3)^3} + m{\left( 3 \right)^2} - 13\left( 3 \right) + n = 0 \\
\Rightarrow 54 + 9m - 39 + n = 0 \\
\Rightarrow 9m + n = - 15{\text{ }}.......{\text{(2)}} \\
$
Using (1) and (2) we get
$
4m + n = \;{\text{ }}10 \\
9m + n = - 15 \\
( - )( - ){\text{ ( + )}} \\
\\
$
$ - 5m{\text{ }} = {\text{ }}25{\text{ }}$
$
m = \dfrac{{25}}{{ - 5}} \\
m = - 5 \\
$
Put value of m in (1)
$
\Rightarrow 4m + n = 10 \\
\Rightarrow 4( - 5) + n = 10 \\
\Rightarrow - 20 + n = 10 \\
\Rightarrow n = 30 \\
$
Therefore, m=-5 and n=30
Now we know that $\alpha + \beta + \gamma = - \dfrac{b}{a}$ (sum of cubic roots)
$
2 + 3 + p = \dfrac{5}{2} \\
5 + p = \dfrac{5}{2} \\
p = \dfrac{5}{2} - \dfrac{5}{1} \\
p = \dfrac{{5 - 10}}{2} \\
p = \dfrac{{ - 5}}{2} \\
$
So, third root= $\dfrac{{ - 5}}{2}$
To determine m+n+2(p)
$
= - 5 + 30 + 2\left( { - \dfrac{5}{2}} \right) \\
= 25 - 5 \\
= 20 \\
$
Note: In this question we should know the basics of algebra like values of roots of equations if put instead of variables gives us 0. Also we must know about the elimination method of linear equations in two variables which will help us to find m and n. Then we must also be aware of the relation between the zeros of a cubic polynomial. Last but not the least we must know about the determination of the values and what are the values for cubic relations of equations. By these simple tips the solution becomes quite easier to calculate.
Complete step-by-step answer:
To find ‘m’ and ‘n’, we will put the values of zeros of the equation in the place of ‘x’ and then equate the equation to zero.
$ \Rightarrow $ 2 and 3 are the zeros of the given equation $2{x^2} + mx - 13x + n$
Case 1
$
f(2) = 2{(2)^3} + m{(2)^2} - 13(2) + n = 0 \\
\Rightarrow 16 + 4m - 26 + n = 0 \\
\Rightarrow 4m + n = 10{\text{ }}......\left( 1 \right) \\
$
Case 2
$
f\left( 3 \right) = 2{(3)^3} + m{\left( 3 \right)^2} - 13\left( 3 \right) + n = 0 \\
\Rightarrow 54 + 9m - 39 + n = 0 \\
\Rightarrow 9m + n = - 15{\text{ }}.......{\text{(2)}} \\
$
Using (1) and (2) we get
$
4m + n = \;{\text{ }}10 \\
9m + n = - 15 \\
( - )( - ){\text{ ( + )}} \\
\\
$
$ - 5m{\text{ }} = {\text{ }}25{\text{ }}$
$
m = \dfrac{{25}}{{ - 5}} \\
m = - 5 \\
$
Put value of m in (1)
$
\Rightarrow 4m + n = 10 \\
\Rightarrow 4( - 5) + n = 10 \\
\Rightarrow - 20 + n = 10 \\
\Rightarrow n = 30 \\
$
Therefore, m=-5 and n=30
Now we know that $\alpha + \beta + \gamma = - \dfrac{b}{a}$ (sum of cubic roots)
$
2 + 3 + p = \dfrac{5}{2} \\
5 + p = \dfrac{5}{2} \\
p = \dfrac{5}{2} - \dfrac{5}{1} \\
p = \dfrac{{5 - 10}}{2} \\
p = \dfrac{{ - 5}}{2} \\
$
So, third root= $\dfrac{{ - 5}}{2}$
To determine m+n+2(p)
$
= - 5 + 30 + 2\left( { - \dfrac{5}{2}} \right) \\
= 25 - 5 \\
= 20 \\
$
Note: In this question we should know the basics of algebra like values of roots of equations if put instead of variables gives us 0. Also we must know about the elimination method of linear equations in two variables which will help us to find m and n. Then we must also be aware of the relation between the zeros of a cubic polynomial. Last but not the least we must know about the determination of the values and what are the values for cubic relations of equations. By these simple tips the solution becomes quite easier to calculate.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE