It is required to seat 5 men and 4 women in a row so that the women occupy the even places. How many such arrangements are possible?
Answer
362.1k+ views
Hint: We use the principle of permutations and combinations to find the number of ways in which we can arrange men and women (make them sit in a row) such that we can meet the above constraint so that the women occupy the even places.
Complete step-by-step answer:
First, before we solve this problem, we try to understand how we can arrange 5 men and 4 women in a row without any constraints. To count the number of combinations for this case, we basically have 9 people (we have no constraints so there is no difference between men and women while counting the number of combinations), we have the combinations as 9!
However, the required number of cases with constraints, clearly we would have a lesser number of cases than 9! arrangements. Thus, to give an idea about the current problem, we have,
M W M W M W M W M (Basically, our arrangement would look like this since women would occupy even places.)
Thus, the places for the women are fixed, thus the total number of arrangements is 4! (which is $^{4}{{P}_{4}}$).
Similarly, due to the women’s places getting fixed, men’s places automatically fixed, thus the total number of arrangements is 5! (which is $^{5}{{P}_{5}}$).
Complete step-by-step answer:
First, before we solve this problem, we try to understand how we can arrange 5 men and 4 women in a row without any constraints. To count the number of combinations for this case, we basically have 9 people (we have no constraints so there is no difference between men and women while counting the number of combinations), we have the combinations as 9!
However, the required number of cases with constraints, clearly we would have a lesser number of cases than 9! arrangements. Thus, to give an idea about the current problem, we have,
M W M W M W M W M (Basically, our arrangement would look like this since women would occupy even places.)
Thus, the places for the women are fixed, thus the total number of arrangements is 4! (which is $^{4}{{P}_{4}}$).
Similarly, due to the women’s places getting fixed, men’s places automatically fixed, thus the total number of arrangements is 5! (which is $^{5}{{P}_{5}}$).
Now, combining these results, we have a total number of combinations of 4!$\times $5!=2880.
Note: While solving the questions related to permutations and combinations, it is important to know the techniques of counting using the permutation and combinations notation. This is because for small cases (suppose case of 3 people) we can actually count by hand with enlisting the cases (that is for 3 people, we can actually enlist 3! =6 cases by hand), however, the same cannot be done for larger cases (example 7 people where cases would be 7! =5040).
Note: While solving the questions related to permutations and combinations, it is important to know the techniques of counting using the permutation and combinations notation. This is because for small cases (suppose case of 3 people) we can actually count by hand with enlisting the cases (that is for 3 people, we can actually enlist 3! =6 cases by hand), however, the same cannot be done for larger cases (example 7 people where cases would be 7! =5040).
Last updated date: 28th Sep 2023
•
Total views: 362.1k
•
Views today: 10.62k
Recently Updated Pages
What do you mean by public facilities

Paragraph on Friendship

Slogan on Noise Pollution

Disadvantages of Advertising

Prepare a Pocket Guide on First Aid for your School

10 Slogans on Save the Tiger

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

One cusec is equal to how many liters class 8 maths CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

What is the color of ferrous sulphate crystals? How does this color change after heating? Name the products formed on strongly heating ferrous sulphate crystals. What type of chemical reaction occurs in this type of change.

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE
