Is it true that every relation which is symmetric and transitive is also reflexive ?
Answer
Verified
507.6k+ views
Hint-Make use of the definitions of reflexive , symmetric, transitive functions and solve this.
A relation R on a set A is called reflexive if (a,a) $ \in $ R holds for every element a $ \in $ A .i.e. if set A = {a,b} then R = {(a,a), (b,b)} is reflexive relation.
A relation R on a set A is called symmetric if (b,a) $ \in $ R holds when (a,b) $ \in $ R.i.e. The relation R={(4,5),(5,4),(6,5),(5,6)} on set A={4,5,6} is symmetric
A relation R on a set A is called transitive if (a,b) $ \in $ R and (b,c) $ \in $ R then (a,c) $ \in $ R for all a,b,c $ \in $ A.i.e. Relation R={(1,2),(2,3),(1,3)} on set A={1,2,3} is transitive.
So, from these statements we can say that the given statement is false, Let us try to prove this, Let us prove it by taking a counter example
For example , take a relation R ={(1,1,),(1,2),(2,1),(2,2)} on A={1,2,3}
So, from this example we can clearly infer from the definition that the given relation is symmetric since(1,2),(2,1) $ \in $R and transitive since (1,2)(2,1) $ \in $R and also (1,1) $ \in $R but not reflexive since
(3,3) $ \notin $ R
So, from this we can write that the statement is given is false
Note: Only when the given statement is false, we can prove it by taking a counterexample else if the given statement is true , then we cannot solve it by taking a counter example.
A relation R on a set A is called reflexive if (a,a) $ \in $ R holds for every element a $ \in $ A .i.e. if set A = {a,b} then R = {(a,a), (b,b)} is reflexive relation.
A relation R on a set A is called symmetric if (b,a) $ \in $ R holds when (a,b) $ \in $ R.i.e. The relation R={(4,5),(5,4),(6,5),(5,6)} on set A={4,5,6} is symmetric
A relation R on a set A is called transitive if (a,b) $ \in $ R and (b,c) $ \in $ R then (a,c) $ \in $ R for all a,b,c $ \in $ A.i.e. Relation R={(1,2),(2,3),(1,3)} on set A={1,2,3} is transitive.
So, from these statements we can say that the given statement is false, Let us try to prove this, Let us prove it by taking a counter example
For example , take a relation R ={(1,1,),(1,2),(2,1),(2,2)} on A={1,2,3}
So, from this example we can clearly infer from the definition that the given relation is symmetric since(1,2),(2,1) $ \in $R and transitive since (1,2)(2,1) $ \in $R and also (1,1) $ \in $R but not reflexive since
(3,3) $ \notin $ R
So, from this we can write that the statement is given is false
Note: Only when the given statement is false, we can prove it by taking a counterexample else if the given statement is true , then we cannot solve it by taking a counter example.
Recently Updated Pages
Class 10 Question and Answer - Your Ultimate Solutions Guide
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Physics: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Trending doubts
Assertion The planet Neptune appears blue in colour class 10 social science CBSE
The term disaster is derived from language AGreek BArabic class 10 social science CBSE
Imagine that you have the opportunity to interview class 10 english CBSE
Find the area of the minor segment of a circle of radius class 10 maths CBSE
Differentiate between natural and artificial ecosy class 10 biology CBSE
Fill the blanks with proper collective nouns 1 A of class 10 english CBSE