
Is it true that every relation which is symmetric and transitive is also reflexive ?
Answer
595.5k+ views
Hint-Make use of the definitions of reflexive , symmetric, transitive functions and solve this.
A relation R on a set A is called reflexive if (a,a) $ \in $ R holds for every element a $ \in $ A .i.e. if set A = {a,b} then R = {(a,a), (b,b)} is reflexive relation.
A relation R on a set A is called symmetric if (b,a) $ \in $ R holds when (a,b) $ \in $ R.i.e. The relation R={(4,5),(5,4),(6,5),(5,6)} on set A={4,5,6} is symmetric
A relation R on a set A is called transitive if (a,b) $ \in $ R and (b,c) $ \in $ R then (a,c) $ \in $ R for all a,b,c $ \in $ A.i.e. Relation R={(1,2),(2,3),(1,3)} on set A={1,2,3} is transitive.
So, from these statements we can say that the given statement is false, Let us try to prove this, Let us prove it by taking a counter example
For example , take a relation R ={(1,1,),(1,2),(2,1),(2,2)} on A={1,2,3}
So, from this example we can clearly infer from the definition that the given relation is symmetric since(1,2),(2,1) $ \in $R and transitive since (1,2)(2,1) $ \in $R and also (1,1) $ \in $R but not reflexive since
(3,3) $ \notin $ R
So, from this we can write that the statement is given is false
Note: Only when the given statement is false, we can prove it by taking a counterexample else if the given statement is true , then we cannot solve it by taking a counter example.
A relation R on a set A is called reflexive if (a,a) $ \in $ R holds for every element a $ \in $ A .i.e. if set A = {a,b} then R = {(a,a), (b,b)} is reflexive relation.
A relation R on a set A is called symmetric if (b,a) $ \in $ R holds when (a,b) $ \in $ R.i.e. The relation R={(4,5),(5,4),(6,5),(5,6)} on set A={4,5,6} is symmetric
A relation R on a set A is called transitive if (a,b) $ \in $ R and (b,c) $ \in $ R then (a,c) $ \in $ R for all a,b,c $ \in $ A.i.e. Relation R={(1,2),(2,3),(1,3)} on set A={1,2,3} is transitive.
So, from these statements we can say that the given statement is false, Let us try to prove this, Let us prove it by taking a counter example
For example , take a relation R ={(1,1,),(1,2),(2,1),(2,2)} on A={1,2,3}
So, from this example we can clearly infer from the definition that the given relation is symmetric since(1,2),(2,1) $ \in $R and transitive since (1,2)(2,1) $ \in $R and also (1,1) $ \in $R but not reflexive since
(3,3) $ \notin $ R
So, from this we can write that the statement is given is false
Note: Only when the given statement is false, we can prove it by taking a counterexample else if the given statement is true , then we cannot solve it by taking a counter example.
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Who composed the song Vande Mataram A RabindraNath class 10 social science CBSE

The revolutionary who died after 63 days of the hunger class 10 social science CBSE

The slogan of Bande Mataram was first adopted during class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Our national song Vande Mataram was taken from which class 10 social science CBSE

Leap year has days A 365 B 366 C 367 D 368 class 10 maths CBSE

