Is a dependent pair of linear equations always consistent why or why not?
Last updated date: 15th Mar 2023
•
Total views: 204k
•
Views today: 4.83k
Answer
204k+ views
Hint: In words, it is where the two graphs intersect, what they have in common. So if an ordered pair is a solution to one equation, but not the other, then it is NOT a solution to the system.
A consistent system is a system that has at least one solution.
An inconsistent system is a system that has no solution.
Complete step-by-step solution:
To solve this type of word problems of linear equations,
Let us consider
${a_1}x + {b_1}y + {c_1} = 0$and ${a_2}x + {b_2}y + {c_2} = 0$ be two linear equations.
And here if,
$ \Rightarrow \dfrac{{{a_1}}}{{{a_2}}} \ne \dfrac{{{b_1}}}{{{b_2}}}$ then the equation is always consistent and every consistent solution has always at least one solution.
The dependent pair of linear equations are always consistent because the other name of the dependent pair if equations is only coincidental lines which are consistent and the intersecting lines also consistent so the dependent pair of equations are always consistent.
Therefore, every dependent pair of linear equations are always consistent.
Note: $ \Rightarrow$ If ${a_1}x + {b_1}y + {c_1} = 0$ and ${a_2}x + {b_2}y + {c_2} = 0$ be two linear equations.
But, $\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} \ne \dfrac{{{c_1}}}{{{c_2}}}$ this type of condition happens then, the equation is inconsistent and that equation has no solution.
A consistent system is a system that has at least one solution.
An inconsistent system is a system that has no solution.
Complete step-by-step solution:
To solve this type of word problems of linear equations,
Let us consider
${a_1}x + {b_1}y + {c_1} = 0$and ${a_2}x + {b_2}y + {c_2} = 0$ be two linear equations.
And here if,
$ \Rightarrow \dfrac{{{a_1}}}{{{a_2}}} \ne \dfrac{{{b_1}}}{{{b_2}}}$ then the equation is always consistent and every consistent solution has always at least one solution.
The dependent pair of linear equations are always consistent because the other name of the dependent pair if equations is only coincidental lines which are consistent and the intersecting lines also consistent so the dependent pair of equations are always consistent.
Therefore, every dependent pair of linear equations are always consistent.
Note: $ \Rightarrow$ If ${a_1}x + {b_1}y + {c_1} = 0$ and ${a_2}x + {b_2}y + {c_2} = 0$ be two linear equations.
But, $\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} \ne \dfrac{{{c_1}}}{{{c_2}}}$ this type of condition happens then, the equation is inconsistent and that equation has no solution.
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE
