
Is a dependent pair of linear equations always consistent why or why not?
Answer
513.6k+ views
Hint: In words, it is where the two graphs intersect, what they have in common. So if an ordered pair is a solution to one equation, but not the other, then it is NOT a solution to the system.
A consistent system is a system that has at least one solution.
An inconsistent system is a system that has no solution.
Complete step-by-step solution:
To solve this type of word problems of linear equations,
Let us consider
${a_1}x + {b_1}y + {c_1} = 0$and ${a_2}x + {b_2}y + {c_2} = 0$ be two linear equations.
And here if,
$ \Rightarrow \dfrac{{{a_1}}}{{{a_2}}} \ne \dfrac{{{b_1}}}{{{b_2}}}$ then the equation is always consistent and every consistent solution has always at least one solution.
The dependent pair of linear equations are always consistent because the other name of the dependent pair if equations is only coincidental lines which are consistent and the intersecting lines also consistent so the dependent pair of equations are always consistent.
Therefore, every dependent pair of linear equations are always consistent.
Note: $ \Rightarrow$ If ${a_1}x + {b_1}y + {c_1} = 0$ and ${a_2}x + {b_2}y + {c_2} = 0$ be two linear equations.
But, $\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} \ne \dfrac{{{c_1}}}{{{c_2}}}$ this type of condition happens then, the equation is inconsistent and that equation has no solution.
A consistent system is a system that has at least one solution.
An inconsistent system is a system that has no solution.
Complete step-by-step solution:
To solve this type of word problems of linear equations,
Let us consider
${a_1}x + {b_1}y + {c_1} = 0$and ${a_2}x + {b_2}y + {c_2} = 0$ be two linear equations.
And here if,
$ \Rightarrow \dfrac{{{a_1}}}{{{a_2}}} \ne \dfrac{{{b_1}}}{{{b_2}}}$ then the equation is always consistent and every consistent solution has always at least one solution.
The dependent pair of linear equations are always consistent because the other name of the dependent pair if equations is only coincidental lines which are consistent and the intersecting lines also consistent so the dependent pair of equations are always consistent.
Therefore, every dependent pair of linear equations are always consistent.
Note: $ \Rightarrow$ If ${a_1}x + {b_1}y + {c_1} = 0$ and ${a_2}x + {b_2}y + {c_2} = 0$ be two linear equations.
But, $\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} \ne \dfrac{{{c_1}}}{{{c_2}}}$ this type of condition happens then, the equation is inconsistent and that equation has no solution.
Recently Updated Pages
Questions & Answers - Ask your doubts

Master Class 9 Social Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Trending doubts
The average rainfall in India is A 105cm B 90cm C 120cm class 10 biology CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Who Won 36 Oscar Awards? Record Holder Revealed

Indias first jute mill was established in 1854 in A class 10 social science CBSE

Indias first jute mill was established in 1854 in A class 10 social science CBSE

