Answer
Verified
497.4k+ views
Hint: Sum of all the angles in a triangle is $180^0$
We have to find out the value of
$2ac\sin \left( {\dfrac{{A - B + C}}{2}} \right)......................\left( 1 \right)$
As we know in triangle the sum of all angles is always equal to$180^\circ $
$
\Rightarrow A + B + C = 180^\circ \\
\Rightarrow A + C = 180^\circ - B \\
$
Therefore from equation 1
$2ac\sin \left( {\dfrac{{180^\circ - B - B}}{2}} \right) = 2ac\sin \left( {\dfrac{{180^\circ - 2B}}{2}} \right) = 2ac\sin \left( {90^\circ - B} \right)$
Now, we know that$\sin \left( {90^\circ - B} \right) = \cos B$, so, use this property
$ \Rightarrow 2ac\sin \left( {90^\circ - B} \right) = 2ac\cos B.................\left( 2 \right)$
Now as we know in any triangle the cosine of angle$B$is
i.e.$ \Rightarrow \cos B = \left( {\dfrac{{{a^2} + {c^2} - {b^2}}}{{2ac}}} \right)$
Therefore from equation 2
\[
\Rightarrow 2ac\cos B = 2ac\left( {\dfrac{{{a^2} + {c^2} - {b^2}}}{{2ac}}} \right) \\
= {a^2} + {c^2} - {b^2} \\
\]
Hence, option b is correct.
Note: -In such types of questions the key concept we have to remember is that the sum of all angles in any triangle is always$180^\circ $ and also remember the formula of cosine of any angle in a triangle, then simplify we will get the required answer.
We have to find out the value of
$2ac\sin \left( {\dfrac{{A - B + C}}{2}} \right)......................\left( 1 \right)$
As we know in triangle the sum of all angles is always equal to$180^\circ $
$
\Rightarrow A + B + C = 180^\circ \\
\Rightarrow A + C = 180^\circ - B \\
$
Therefore from equation 1
$2ac\sin \left( {\dfrac{{180^\circ - B - B}}{2}} \right) = 2ac\sin \left( {\dfrac{{180^\circ - 2B}}{2}} \right) = 2ac\sin \left( {90^\circ - B} \right)$
Now, we know that$\sin \left( {90^\circ - B} \right) = \cos B$, so, use this property
$ \Rightarrow 2ac\sin \left( {90^\circ - B} \right) = 2ac\cos B.................\left( 2 \right)$
Now as we know in any triangle the cosine of angle$B$is
i.e.$ \Rightarrow \cos B = \left( {\dfrac{{{a^2} + {c^2} - {b^2}}}{{2ac}}} \right)$
Therefore from equation 2
\[
\Rightarrow 2ac\cos B = 2ac\left( {\dfrac{{{a^2} + {c^2} - {b^2}}}{{2ac}}} \right) \\
= {a^2} + {c^2} - {b^2} \\
\]
Hence, option b is correct.
Note: -In such types of questions the key concept we have to remember is that the sum of all angles in any triangle is always$180^\circ $ and also remember the formula of cosine of any angle in a triangle, then simplify we will get the required answer.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life