Answer
Verified
420.6k+ views
Hint: In this question, we need to find the temperature of each weekday. For solving this, we are going to need to assume the temperature of the middle day as the starting one. Then, we are going to denote the temperature of each day with respect to the middle day’s temperature plus or minus the assumed common difference times some natural number. Once we have the temperature of all the days, we are going to put in the values in the given equations in the question, calculate the assumed values, put them in the equation of each day and then we are going to have our answer.
Formula Used:
We are going to use the formula of arithmetic progression, which is:
\[{a_n} = a + \left( {n - 1} \right)d\] , where \[{a_n}\] is the first term, \[a\] is the first term and \[d\] is the common difference.
Complete step-by-step answer:
The given days are Monday, Tuesday, Wednesday, Thursday, and Friday.
So, we take the middle day (Wednesday) as the base day and we are going to represent the other days with respect to Wednesday.
Now, let the temperature on Wednesday be \[a\] and since it forms an arithmetic progression, let the common difference be \[d\] .
So, the temperature on the other days is:
Monday: \[a - 2d\] Tuesday: \[a - d\] Wednesday: \[a\] Thursday: \[a + d\] Friday: \[a + 2d\]
Now, according two the first given information, we have:
\[a - 2d + a - d + a = 0\]
or, \[3a - 3d = 0\] (i)
Then, with the second piece of information, we have:
\[a + d + a + 2d = 15\]
or, \[2a + 3d = 15\] (ii)
Adding equations (i) and (ii),
\[5a = 15\]
or, \[a = 3\]
Putting \[a = 3\] in equation (i) we get,
\[d = 3\]
Hence, the temperature on each day is:
Monday: \[3 - 2 \times 3 = - 3^\circ \]
Tuesday: \[3 - 3 = 0^\circ \]
Wednesday: \[3^\circ \]
Thursday: \[3 + 3 = 6^\circ \]
and, Friday: \[3 + 6 = 9^\circ \]
Note: So, we saw that in solving questions like these, first we need to assume the first term of the sequence (represented by ‘a’), the common difference of the given arithmetic progression (represented by ‘d’). Then we represent all the given unknown values as first term plus or minus the common difference times some natural number. Then we put in the assumed values of the unknown quantities into the equations given in the question, calculate the assumed values, put them in the equation of each unknown value and then we are going to have our answer.
Formula Used:
We are going to use the formula of arithmetic progression, which is:
\[{a_n} = a + \left( {n - 1} \right)d\] , where \[{a_n}\] is the first term, \[a\] is the first term and \[d\] is the common difference.
Complete step-by-step answer:
The given days are Monday, Tuesday, Wednesday, Thursday, and Friday.
So, we take the middle day (Wednesday) as the base day and we are going to represent the other days with respect to Wednesday.
Now, let the temperature on Wednesday be \[a\] and since it forms an arithmetic progression, let the common difference be \[d\] .
So, the temperature on the other days is:
Monday: \[a - 2d\] Tuesday: \[a - d\] Wednesday: \[a\] Thursday: \[a + d\] Friday: \[a + 2d\]
Now, according two the first given information, we have:
\[a - 2d + a - d + a = 0\]
or, \[3a - 3d = 0\] (i)
Then, with the second piece of information, we have:
\[a + d + a + 2d = 15\]
or, \[2a + 3d = 15\] (ii)
Adding equations (i) and (ii),
\[5a = 15\]
or, \[a = 3\]
Putting \[a = 3\] in equation (i) we get,
\[d = 3\]
Hence, the temperature on each day is:
Monday: \[3 - 2 \times 3 = - 3^\circ \]
Tuesday: \[3 - 3 = 0^\circ \]
Wednesday: \[3^\circ \]
Thursday: \[3 + 3 = 6^\circ \]
and, Friday: \[3 + 6 = 9^\circ \]
Note: So, we saw that in solving questions like these, first we need to assume the first term of the sequence (represented by ‘a’), the common difference of the given arithmetic progression (represented by ‘d’). Then we represent all the given unknown values as first term plus or minus the common difference times some natural number. Then we put in the assumed values of the unknown quantities into the equations given in the question, calculate the assumed values, put them in the equation of each unknown value and then we are going to have our answer.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths