Answer

Verified

388.2k+ views

**Hint:**Diagonals are the line segments that join the opposite vertices of the quadrilaterals. To find the diagonals of which closed figure bisect each other at right angle, first draw both diagonals and then by congruence and similarity of triangles we get the relation between the angles and then with the help of straight angle on line segment we can find the angle between the diagonals.

**Complete step-by-step solution:**

Option (A) is Rhombus firstly drawing its diagonals; we get the below drawn figure.

Here, $ABCD$ is a rhombus and “$AC$” and “$BD$” are its two diagonals.

We have to check either the diagonals $AC$ and $BD$ bisect each other at right angles. That is \[\angle AOB\], $\angle BOC$,$\angle COD$ and $\angle AOD$ are right angles or not.

Now, we take two triangles $\Delta AOB$ and $\Delta BOC$

Since all the sides of rhombus of rhombus are equal,

So, side $AB = $ Side $BC$-----------(1)

Half of the diagonal $BD$ that is $OB$ is common to both the triangles.

$OB = OB$-------------(2)

We know that the diagonal of rhombus bisect the vertices through which it passes,

So, $\angle ABO = \angle CBO$-----------(3)

So, by combining (1), (2) and (3) we can say that triangle $\Delta AOB$ is congruent to the triangle $\Delta {\rm B}OC$ by side angle side ( $SAS$ ) congruence theorem.

i.e $\Delta AOB \cong \Delta BOC$.

By congruent part of congruence theorem (CPCT),

$\angle AOB = \angle BOC$

Now, $AC$ is a line segment. So,

$\angle AOB + \angle BOC = 18{0^ \circ }$ (straight angle)

$\angle AOB = BOC$,

$

2\angle AOB = 18{0^ \circ } \\

\Rightarrow \angle {\rm A}{\rm O}{\rm B} = \dfrac{{{{180}^ \circ }}}{2} \\

\therefore \angle AOB = {90^ \circ }

$

So, $\angle BOC = {90^ \circ }$

Similarly, $\angle COD$ and $\angle AOD$are right angle.

Thus, both the diagonals of rhombus bisect each other at right angles.

Similarly, we can check in case any quadrilateral like rectangle, parallelogram, Square, trapezium, kite but we get only in case of rhombus and square, the diagonals bisect each other at right angles.

Thus, option (B) and (D) are incorrect.

Now, Option (C) In circle there are no particularly defined diagonals, so here the bisection of diagonals is not possible.

**Hence, option (A) is correct.**

**Note:**Similarly, we can prove that the diagonals of a square bisect each other at right angles.

By the congruence theorem we can also prove that opposite angles of the rhombus and parallelogram are equal. For this we take the opposite triangle that is $\Delta AOB$ and $\Delta COD$, then proceed as above.

Recently Updated Pages

Which of the following is correct regarding the Indian class 10 social science CBSE

Who was the first sultan of delhi to issue regular class 10 social science CBSE

The Nagarjuna Sagar project was constructed on the class 10 social science CBSE

Which one of the following countries is the largest class 10 social science CBSE

What is Biosphere class 10 social science CBSE

Read the following statement and choose the best possible class 10 social science CBSE

Trending doubts

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which are the Top 10 Largest Countries of the World?

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Difference Between Plant Cell and Animal Cell

10 examples of law on inertia in our daily life