
In what ratio does the point \[\left( \frac{24}{11},\,y \right)\] divides the line segment joining the points
P (2, –2) and Q (3, 7) ? Also find the value of y?
Answer
592.8k+ views
Hint: To find the ratio and the value of y, we have to assume that the line segment PQ is in the ratio of \[\left( \lambda :1 \right)\]
Complete step by step solution: It is given:
Point \[B\left( \frac{24}{11},\,y \right),\,P(2,-2),\,Q(3,7)\]
So, \[\begin{align}
& {{x}_{1}}=2,\,{{y}_{1}}=-2 \\
& {{x}_{2}}=3,\,{{y}_{2}}=7 \\
\end{align}\]
According to the assumption, we can say that
\[\left( x=\frac{\lambda {{x}_{2}}+{{x}_{1}}}{\lambda +1} \right)\] ....(1)
\[\left( y=\frac{\lambda {{y}_{2}}+{{y}_{1}}}{\lambda +1} \right)\] ....(2)
By putting values and solving the equation (1), we get
\[\begin{align}
& \frac{24}{11}=\frac{\lambda (3)+2}{\lambda +1} \\
& 24\lambda +24=33\lambda +22 \\
& \lambda =\frac{2}{9} \\
\end{align}\]
By putting values and solving the equation (2), we get
So, the ratio in which B divides PQ =2:9 and the value of y=-(4/11)
\[\begin{align}
& y=\frac{(2/9\times 7)+(-2)}{(2/9+1)} \\
& y=\frac{(14/9)-2}{(11/9)} \\
& y =-\frac{4}{11} \\
\end{align}\].
Note: Values should be put correctly. Before putting values, it is important to identify the values of \[{{x}_{1}},\,{{x}_{2}},\,{{y}_{1}}\,and\,{{y}_{2}}\].
Complete step by step solution: It is given:
Point \[B\left( \frac{24}{11},\,y \right),\,P(2,-2),\,Q(3,7)\]
So, \[\begin{align}
& {{x}_{1}}=2,\,{{y}_{1}}=-2 \\
& {{x}_{2}}=3,\,{{y}_{2}}=7 \\
\end{align}\]
According to the assumption, we can say that
\[\left( x=\frac{\lambda {{x}_{2}}+{{x}_{1}}}{\lambda +1} \right)\] ....(1)
\[\left( y=\frac{\lambda {{y}_{2}}+{{y}_{1}}}{\lambda +1} \right)\] ....(2)
By putting values and solving the equation (1), we get
\[\begin{align}
& \frac{24}{11}=\frac{\lambda (3)+2}{\lambda +1} \\
& 24\lambda +24=33\lambda +22 \\
& \lambda =\frac{2}{9} \\
\end{align}\]
By putting values and solving the equation (2), we get
So, the ratio in which B divides PQ =2:9 and the value of y=-(4/11)
\[\begin{align}
& y=\frac{(2/9\times 7)+(-2)}{(2/9+1)} \\
& y=\frac{(14/9)-2}{(11/9)} \\
& y =-\frac{4}{11} \\
\end{align}\].
Note: Values should be put correctly. Before putting values, it is important to identify the values of \[{{x}_{1}},\,{{x}_{2}},\,{{y}_{1}}\,and\,{{y}_{2}}\].
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

