Answer

Verified

449.7k+ views

Hint: If a point C divides the line joining \[A\left( {{x}_{1}},{{y}_{1}} \right)\] and \[B\left( {{x}_{2}},{{y}_{2}} \right)\] divides it in the ratio \[m:n\], then the coordinates of C are given as : \[C=\left( \dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n},\dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n} \right)\]. Apply this formula to the given condition in the question.

Given points are \[p\left( 2,-2 \right)\]and \[Q\left( 3,7 \right)\] let us assume the point \[\left[ \dfrac{24}{11},y \right]\] divides the line segment PQ in the ratio \[m:n\].

If a point C divides the line joining \[A\left( {{x}_{1}},{{y}_{1}} \right)\] and \[B\left( {{x}_{2}},{{y}_{2}} \right)\] divides it in the ratio \[m:n\], then the coordinates of C are given as:

\[C=\left( \dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n},\dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n} \right)\] this is called section formula.

Now, let us apply this section formula for the data given:

\[\left( \dfrac{24}{11},y \right)=\left( \dfrac{m\left( 3 \right)+n\left( 2 \right)}{m+n},\dfrac{m\left( 7 \right)+n\left( -2 \right)}{m+n} \right)..........(1)\]

Equating the x coordinate from the above equation, we will have: \[\dfrac{24}{11}=\dfrac{m\left( 3 \right)+n\left( 2 \right)}{m+n}\].

By cross multiplying we will have: \[24\left( m+n \right)=11\left( m\left( 3 \right)+n\left( 2 \right) \right)\]

\[24m+24n=33m+22n\].

\[2n=9m\].

\[\dfrac{m}{n}=\dfrac{2}{9}\].

So, we can further conclude that the ratio \[m:n\] is nothing but \[2:9\].

Now to determine the value of y, let us equate the y -coordinates in equation (1).

\[y=\dfrac{m\left( 7 \right)+n\left( -2 \right)}{m+n}\].

As \[m=2\]and \[n=9\], substitute in the above equation we will have:

\[y=\dfrac{2\left( 7 \right)+9\left( -2 \right)}{2+9}\]

Upon solving,

\[y=\dfrac{-4}{11}\].

So, the value of y is \[\dfrac{-4}{11}\].

Thus the ratio of \[m:n\]is \[2:9\], and the value of y is \[\dfrac{-4}{11}\].

So, the answer we get Ratio is \[2:9\] and \[y=\dfrac{-4}{11}\]

Note: if C divides the joining of two points \[A\left( {{x}_{1}},{{y}_{1}} \right)\] and \[B\left( {{x}_{2}},{{y}_{2}} \right)\] externally, then the coordinates of C are given as \[C=\left( \dfrac{m{{x}_{2}}-n{{x}_{1}}}{m-n},\dfrac{m{{y}_{2}}-n{{y}_{1}}}{m-n} \right)\]. As we just have to find the ratio \[m:n\], we just need one equation to find out the answer, even if there are two variables in the expression

Given points are \[p\left( 2,-2 \right)\]and \[Q\left( 3,7 \right)\] let us assume the point \[\left[ \dfrac{24}{11},y \right]\] divides the line segment PQ in the ratio \[m:n\].

If a point C divides the line joining \[A\left( {{x}_{1}},{{y}_{1}} \right)\] and \[B\left( {{x}_{2}},{{y}_{2}} \right)\] divides it in the ratio \[m:n\], then the coordinates of C are given as:

\[C=\left( \dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n},\dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n} \right)\] this is called section formula.

Now, let us apply this section formula for the data given:

\[\left( \dfrac{24}{11},y \right)=\left( \dfrac{m\left( 3 \right)+n\left( 2 \right)}{m+n},\dfrac{m\left( 7 \right)+n\left( -2 \right)}{m+n} \right)..........(1)\]

Equating the x coordinate from the above equation, we will have: \[\dfrac{24}{11}=\dfrac{m\left( 3 \right)+n\left( 2 \right)}{m+n}\].

By cross multiplying we will have: \[24\left( m+n \right)=11\left( m\left( 3 \right)+n\left( 2 \right) \right)\]

\[24m+24n=33m+22n\].

\[2n=9m\].

\[\dfrac{m}{n}=\dfrac{2}{9}\].

So, we can further conclude that the ratio \[m:n\] is nothing but \[2:9\].

Now to determine the value of y, let us equate the y -coordinates in equation (1).

\[y=\dfrac{m\left( 7 \right)+n\left( -2 \right)}{m+n}\].

As \[m=2\]and \[n=9\], substitute in the above equation we will have:

\[y=\dfrac{2\left( 7 \right)+9\left( -2 \right)}{2+9}\]

Upon solving,

\[y=\dfrac{-4}{11}\].

So, the value of y is \[\dfrac{-4}{11}\].

Thus the ratio of \[m:n\]is \[2:9\], and the value of y is \[\dfrac{-4}{11}\].

So, the answer we get Ratio is \[2:9\] and \[y=\dfrac{-4}{11}\]

Note: if C divides the joining of two points \[A\left( {{x}_{1}},{{y}_{1}} \right)\] and \[B\left( {{x}_{2}},{{y}_{2}} \right)\] externally, then the coordinates of C are given as \[C=\left( \dfrac{m{{x}_{2}}-n{{x}_{1}}}{m-n},\dfrac{m{{y}_{2}}-n{{y}_{1}}}{m-n} \right)\]. As we just have to find the ratio \[m:n\], we just need one equation to find out the answer, even if there are two variables in the expression

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

How many crores make 10 million class 7 maths CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE