
In the right-angle triangle, the side opposite to the angle having measure 30 degrees is …………………….to the hypotenuse
A). Three times
B). Half
C). Double
D). Fourth part
Answer
568.8k+ views
Hint: In this question assume equilateral triangle ABC and draw an altitude from point A on BC such that it bisects BC at D and also $\angle A$, using this information to approach the solution of the question.
Complete step-by-step solution:
Let’s take an equilateral triangle ABC as shown in the figure above
So, for an equilateral triangle all sides are equal hence AB = BC = CA = p meters and since it is an equilateral triangle hence $\angle A = \angle B = \angle C = {60^\circ }$
Now let’s draw an altitude from point A on BC such that it bisects BC at D and also bisects angle A.
Now we get two right angles $\Delta $ that is $\Delta ACD$ and $\Delta ADB$such that $\angle CAD = \angle DAB = {30^\circ }$.
Clearly, $DB = \dfrac{p}{2}$ as the altitude from point A to BC bisects it in two equal halves.
Now as Ab is the hypotenuse and it is p meters and DB is $\dfrac{p}{2}$ meters
So, we can say that $DB = \dfrac{1}{2}AB$
Hence the side opposite to the angles having measure 30 degree is half the length of hypotenuse.
Note: Whenever we come across such problem statements we simply need to think of equilateral triangles as they have the property that the measure of the angle in them is 60 degrees. Moreover, stretching a basic altitude which bisects the side on which it is drawn always helps in simplification.
Complete step-by-step solution:
Let’s take an equilateral triangle ABC as shown in the figure above
So, for an equilateral triangle all sides are equal hence AB = BC = CA = p meters and since it is an equilateral triangle hence $\angle A = \angle B = \angle C = {60^\circ }$
Now let’s draw an altitude from point A on BC such that it bisects BC at D and also bisects angle A.
Now we get two right angles $\Delta $ that is $\Delta ACD$ and $\Delta ADB$such that $\angle CAD = \angle DAB = {30^\circ }$.
Clearly, $DB = \dfrac{p}{2}$ as the altitude from point A to BC bisects it in two equal halves.
Now as Ab is the hypotenuse and it is p meters and DB is $\dfrac{p}{2}$ meters
So, we can say that $DB = \dfrac{1}{2}AB$
Hence the side opposite to the angles having measure 30 degree is half the length of hypotenuse.
Note: Whenever we come across such problem statements we simply need to think of equilateral triangles as they have the property that the measure of the angle in them is 60 degrees. Moreover, stretching a basic altitude which bisects the side on which it is drawn always helps in simplification.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Which of the following does not have a fundamental class 10 physics CBSE

What is the full form of POSCO class 10 social science CBSE

State BPT theorem and prove it class 10 maths CBSE

A Gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

Write the difference between soap and detergent class 10 chemistry CBSE

A triangle ABC is drawn to circumscribe a circle of class 10 maths CBSE

