
In the rhombus ABCD, show that $4{\left( {AB} \right)^2} = {\left( {AC} \right)^2} + {\left( {BD} \right)^2}$
Answer
603.9k+ views
Hint – Take any one of the four triangles and apply PGT in it after using the few properties of the Rhombus, that is diagonals are perpendicular bisectors of each other and all sides are equal.
ABCD rhombus is shown above.
As we know in rhombus diagonals bisect each other and are perpendicular to each other.
$
\Rightarrow OB = OD,{\text{ & }}OA = OC..................\left( 1 \right) \\
\angle AOB = \angle AOD = \angle BOC = \angle DOC = {90^0} \\
$
And also we know that all the sides of the rhombus are equal.
$ \Rightarrow AB = BC = CD = DA$………………. (2)
So in triangle AOB apply Pythagoras Theorem
${\left( {{\text{Hypotenuse}}} \right)^2} = {\left( {{\text{Perpendicular}}} \right)^2} + {\left( {{\text{Base}}} \right)^2}$
$ \Rightarrow {\left( {AB} \right)^2} = {\left( {OA} \right)^2} + {\left( {OB} \right)^2}$…………. (3)
Now from figure $AC = OA + OC,{\text{ }}BD = BO + OD$
From equation (2)
$
AC = OA + OA,{\text{ }}BD = OB + OB \\
\Rightarrow OA = \dfrac{{AC}}{2},{\text{ }}OB = \dfrac{{BD}}{2} \\
$
Now from equation (3)
$
\Rightarrow {\left( {AB} \right)^2} = {\left( {\dfrac{{AC}}{2}} \right)^2} + {\left( {\dfrac{{BD}}{2}} \right)^2} \\
\Rightarrow {\left( {AB} \right)^2} = \dfrac{{{{\left( {AC} \right)}^2}}}{4} + \dfrac{{{{\left( {BD} \right)}^2}}}{4} \\
\Rightarrow 4{\left( {AB} \right)^2} = {\left( {AC} \right)^2} + {\left( {BD} \right)^2} \\
$
Hence Proved.
Note – In such types of questions the key concept we have to remember is that always recall the condition of Rhombus which is stated above in equation (1) and (2), then use the property of Pythagoras theorem which is also stated above and simplify according to properties of rhombus, we will get the required result.
ABCD rhombus is shown above.
As we know in rhombus diagonals bisect each other and are perpendicular to each other.
$
\Rightarrow OB = OD,{\text{ & }}OA = OC..................\left( 1 \right) \\
\angle AOB = \angle AOD = \angle BOC = \angle DOC = {90^0} \\
$
And also we know that all the sides of the rhombus are equal.
$ \Rightarrow AB = BC = CD = DA$………………. (2)
So in triangle AOB apply Pythagoras Theorem
${\left( {{\text{Hypotenuse}}} \right)^2} = {\left( {{\text{Perpendicular}}} \right)^2} + {\left( {{\text{Base}}} \right)^2}$
$ \Rightarrow {\left( {AB} \right)^2} = {\left( {OA} \right)^2} + {\left( {OB} \right)^2}$…………. (3)
Now from figure $AC = OA + OC,{\text{ }}BD = BO + OD$
From equation (2)
$
AC = OA + OA,{\text{ }}BD = OB + OB \\
\Rightarrow OA = \dfrac{{AC}}{2},{\text{ }}OB = \dfrac{{BD}}{2} \\
$
Now from equation (3)
$
\Rightarrow {\left( {AB} \right)^2} = {\left( {\dfrac{{AC}}{2}} \right)^2} + {\left( {\dfrac{{BD}}{2}} \right)^2} \\
\Rightarrow {\left( {AB} \right)^2} = \dfrac{{{{\left( {AC} \right)}^2}}}{4} + \dfrac{{{{\left( {BD} \right)}^2}}}{4} \\
\Rightarrow 4{\left( {AB} \right)^2} = {\left( {AC} \right)^2} + {\left( {BD} \right)^2} \\
$
Hence Proved.
Note – In such types of questions the key concept we have to remember is that always recall the condition of Rhombus which is stated above in equation (1) and (2), then use the property of Pythagoras theorem which is also stated above and simplify according to properties of rhombus, we will get the required result.
Recently Updated Pages
Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

In which state Jews are not considered minors?

What is Ornithophobia?

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

How many members did the Constituent Assembly of India class 10 social science CBSE

Write an application to the principal requesting five class 10 english CBSE

The Constitution of India was adopted on A 26 November class 10 social science CBSE

