
In the given figure, ABCD is a trapezium with ${\text{AB}}\ parallel {\text{DC}}$. If $\Delta AED$ is similar to $\Delta BEC$. Prove that AD = BC
Answer
609k+ views
Hint- Check for the relation between corresponding angles and sides of both triangles.
Given: \[ABCD\] is a trapezium with ${\text{AB}}\parallel {\text{DC}}$.
Diagonals $AC$ and $BD$ intersect at point $E$.
To prove: ${\text{AD = BC}}$
Now, $\Delta AED \sim \Delta BEC{\text{ }}\left( {\because {\text{Given}}} \right)$
$\therefore \dfrac{{{\text{AE}}}}{{{\text{BE}}}}{\text{ = }}\dfrac{{{\text{ED}}}}{{{\text{EC}}}}{\text{ = }}\dfrac{{{\text{AD}}}}{{{\text{BC}}}}{\text{ }} \ldots \ldots \left( 1 \right)\left( {{\text{corresponding sides are proportional}}} \right)$
In \[\Delta {\text{ABE}}\]and \[\Delta {\text{CDE}}\]:
\[
\angle {\text{AEB = }}\angle {\text{CED }}\left( {{\text{vertically opposite angles}}} \right) \\
\angle {\text{EAB}} = {\text{ }}\angle {\text{ECD }}\left( {{\text{alternate angles}}} \right) \\
\]
Hence, by AA similarity, we can say
\[\Delta {\text{ABE}} \sim \Delta {\text{CDE }}\]
Now, \[\dfrac{{{\text{AB}}}}{{{\text{CD}}}} = \dfrac{{{\text{EB}}}}{{{\text{ED}}}} = \dfrac{{{\text{AE}}}}{{{\text{EC}}}}{\text{ }}\left( {\because {\text{corresponding sides are proportional}}} \right)\]
Therefore, \[\dfrac{{{\text{EC}}}}{{{\text{ED}}}} = \dfrac{{{\text{AE}}}}{{{\text{EB}}}}{\text{ }} \ldots \ldots \left( 2 \right)\]
From \[\left( 1 \right)\]and \[\left( 2 \right)\], we get
\[\dfrac{{{\text{AD}}}}{{{\text{BC}}}} = \dfrac{{{\text{ED}}}}{{{\text{EC}}}}\]
As we know, \[{\text{ED = EC}}\]
\[
\Rightarrow \dfrac{{{\text{AD}}}}{{{\text{BC}}}} = 1{\text{ }} \\
\therefore {\text{ AD = BC}} \\
\]
Hence Proved.
Note- Two triangles are similar if their corresponding angles are congruent and corresponding sides are proportional. There are many criterions of similarity and many properties of similar triangles which come handy while solving problems like these.
Given: \[ABCD\] is a trapezium with ${\text{AB}}\parallel {\text{DC}}$.
Diagonals $AC$ and $BD$ intersect at point $E$.
To prove: ${\text{AD = BC}}$
Now, $\Delta AED \sim \Delta BEC{\text{ }}\left( {\because {\text{Given}}} \right)$
$\therefore \dfrac{{{\text{AE}}}}{{{\text{BE}}}}{\text{ = }}\dfrac{{{\text{ED}}}}{{{\text{EC}}}}{\text{ = }}\dfrac{{{\text{AD}}}}{{{\text{BC}}}}{\text{ }} \ldots \ldots \left( 1 \right)\left( {{\text{corresponding sides are proportional}}} \right)$
In \[\Delta {\text{ABE}}\]and \[\Delta {\text{CDE}}\]:
\[
\angle {\text{AEB = }}\angle {\text{CED }}\left( {{\text{vertically opposite angles}}} \right) \\
\angle {\text{EAB}} = {\text{ }}\angle {\text{ECD }}\left( {{\text{alternate angles}}} \right) \\
\]
Hence, by AA similarity, we can say
\[\Delta {\text{ABE}} \sim \Delta {\text{CDE }}\]
Now, \[\dfrac{{{\text{AB}}}}{{{\text{CD}}}} = \dfrac{{{\text{EB}}}}{{{\text{ED}}}} = \dfrac{{{\text{AE}}}}{{{\text{EC}}}}{\text{ }}\left( {\because {\text{corresponding sides are proportional}}} \right)\]
Therefore, \[\dfrac{{{\text{EC}}}}{{{\text{ED}}}} = \dfrac{{{\text{AE}}}}{{{\text{EB}}}}{\text{ }} \ldots \ldots \left( 2 \right)\]
From \[\left( 1 \right)\]and \[\left( 2 \right)\], we get
\[\dfrac{{{\text{AD}}}}{{{\text{BC}}}} = \dfrac{{{\text{ED}}}}{{{\text{EC}}}}\]
As we know, \[{\text{ED = EC}}\]
\[
\Rightarrow \dfrac{{{\text{AD}}}}{{{\text{BC}}}} = 1{\text{ }} \\
\therefore {\text{ AD = BC}} \\
\]
Hence Proved.
Note- Two triangles are similar if their corresponding angles are congruent and corresponding sides are proportional. There are many criterions of similarity and many properties of similar triangles which come handy while solving problems like these.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

