In the given figure, ABCD is a square of side 21 cm. AC and BD are two diagonals of the square. Two semi-circles are drawn with AD and BC as diameters. Find the area of the shaded region (in \[c{m^2}\] ). (Take \[\pi = \dfrac{{22}}{7}\])

Last updated date: 20th Mar 2023
•
Total views: 304.5k
•
Views today: 4.82k
Answer
304.5k+ views
Hint: Calculate the area of the shaded region inside the square ABCD and then calculate the area of the two semi-circles and add them both to find the answer.
Complete step by step answer:
Let the area of the shaded region inside the square be \[{A_1}\] and the area of the shaded region outside the square be \[{A_2}\].
The two diagonals divide the square into four equal parts. In the figure, two out of the four parts are shaded. Hence, the area of the shaded region inside the square is half of the area of the square. We know that the area of the square of side a is \[{a^2}\].
\[{A_1} = \dfrac{1}{2}{a^2}..........(1)\]
It is given that the length of the side of the square is 21 cm. Hence, substituting in equation (1), we get:
\[{A_1} = \dfrac{1}{2}{(21)^2}\]
\[{A_1} = 220.5c{m^2}...........(2)\]
The shaded region outside the square are two semicircles with diameter 21 cm. Hence, the total area is equal to the area of the circle with diameter 21 cm.
The area of circle with diameter d is given as follows:
\[{A_2} = \pi {\left( {\dfrac{d}{2}} \right)^2}............(3)\]
Substituting the value d = 21 cm in equation (3), we get:
\[{A_2} = \pi {\left( {\dfrac{{21}}{2}} \right)^2}\]
\[{A_2} = \dfrac{{22}}{7}{\left( {\dfrac{{21}}{2}} \right)^2}\]
\[{A_2} = \dfrac{{11 \times 21 \times 3}}{2}\]
\[{A_2} = 346.5c{m^2}..........(4)\]
The total area is the sum of the two areas we calculated.
\[A = {A_1} + {A_2}\]
From equations (2) and (4), we have:
\[A = 220.5 + 346.5\]
\[A = 567c{m^2}\]
Hence, the area of the shaded region is 567 \[c{m^2}\].
Note: You can also find the area of each region separately and calculate the total area. Be careful while calculating the area of the semicircles, 21 cm is the diameter and not the radius.
Complete step by step answer:
Let the area of the shaded region inside the square be \[{A_1}\] and the area of the shaded region outside the square be \[{A_2}\].

The two diagonals divide the square into four equal parts. In the figure, two out of the four parts are shaded. Hence, the area of the shaded region inside the square is half of the area of the square. We know that the area of the square of side a is \[{a^2}\].
\[{A_1} = \dfrac{1}{2}{a^2}..........(1)\]
It is given that the length of the side of the square is 21 cm. Hence, substituting in equation (1), we get:
\[{A_1} = \dfrac{1}{2}{(21)^2}\]
\[{A_1} = 220.5c{m^2}...........(2)\]
The shaded region outside the square are two semicircles with diameter 21 cm. Hence, the total area is equal to the area of the circle with diameter 21 cm.

The area of circle with diameter d is given as follows:
\[{A_2} = \pi {\left( {\dfrac{d}{2}} \right)^2}............(3)\]
Substituting the value d = 21 cm in equation (3), we get:
\[{A_2} = \pi {\left( {\dfrac{{21}}{2}} \right)^2}\]
\[{A_2} = \dfrac{{22}}{7}{\left( {\dfrac{{21}}{2}} \right)^2}\]
\[{A_2} = \dfrac{{11 \times 21 \times 3}}{2}\]
\[{A_2} = 346.5c{m^2}..........(4)\]
The total area is the sum of the two areas we calculated.
\[A = {A_1} + {A_2}\]
From equations (2) and (4), we have:
\[A = 220.5 + 346.5\]
\[A = 567c{m^2}\]
Hence, the area of the shaded region is 567 \[c{m^2}\].
Note: You can also find the area of each region separately and calculate the total area. Be careful while calculating the area of the semicircles, 21 cm is the diameter and not the radius.
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE
