Answer
Verified
435.9k+ views
Hint: First use the property of transversal line for interior angles to get the relation between the angle A and D. Then use the property of Rhombus that its diagonals bisect the angles to get the desired result.
Complete step-by-step answer:
We have given in the problem that $ABCD$ is a Rhombus and the measure of the given angle is $\angle A = {80^ \circ }$.
So, we can say that $AB||CD$ and all the sides are equal in length using the property of Rhombus.
As we have given that $AB||CD$, then the line $AD$ is the transversal line through these lines.
Using the property of transversal line, that the pair of interior angles on the same side of the transversal line is supplementary. So, we have
$\angle A + \angle D = {180^ \circ }$
$\Rightarrow$$\angle D = {180^ \circ } - \angle A$
Substitute the value of the angle $\angle A = 80^\circ $ into the equation.
$\Rightarrow$$\angle D = {180^ \circ } - {80^ \circ }$
$\Rightarrow$$\angle D = {100^ \circ }$
We know that, $\angle D$ can be express as:
$\Rightarrow$$\angle ADB + \angle BDC = \angle D$
As we know, that the diagonals of the Rhombus bisect the angles, so we can conclude that $BD$ dissect the angle $\angle D$, so we have$\angle ADB = \angle BDC$. Then,
$\Rightarrow$$2\angle BDC = {100^ \circ }$
$\Rightarrow$$\angle BDC = \dfrac{{{{100}^ \circ }}}{2}$
$\Rightarrow$$\angle BDC = {50^ \circ }$
So, the required measure of the angle,$\angle BDC = {50^ \circ }$.
Note: Alternative method:
We know that $\angle A = \angle C$ and $\angle B = \angle D$ (opposite angle of the Rhombus are equal)
We know that the sum of all the interior angles of the Rhombus is $360^\circ $. So, we have $\angle A + \angle B + \angle C + \angle D = 360$
Substitute $\angle A = \angle C$ and $\angle B = \angle D$ into the equation:
$\Rightarrow$$2\angle A + 2\angle D = 360$
$ \Rightarrow \angle A + \angle D = 180$
$\Rightarrow$$\angle D = {180^ \circ } - \angle A$
Now, we substitute the given angle,$\angle A = {80^ \circ }$into the equation:
$\Rightarrow$$\angle D = {180^ \circ } - {80^ \circ }$
$\Rightarrow$$\angle D = {100^ \circ }$
As we know, that the diagonals of the Rhombus bisect the angles, so we can conclude that $BD$ dissect the angle $\angle D$, so we have $\angle ADB = \angle BDC$. Then,
$\Rightarrow$$2\angle BDC = {100^ \circ }$
$\Rightarrow$$\angle BDC = \dfrac{{{{100}^ \circ }}}{2}$
$\Rightarrow$$\angle BDC = {50^ \circ }$
So, the required measure of the angle,$\angle BDC = {50^ \circ }$.
Complete step-by-step answer:
We have given in the problem that $ABCD$ is a Rhombus and the measure of the given angle is $\angle A = {80^ \circ }$.
So, we can say that $AB||CD$ and all the sides are equal in length using the property of Rhombus.
As we have given that $AB||CD$, then the line $AD$ is the transversal line through these lines.
Using the property of transversal line, that the pair of interior angles on the same side of the transversal line is supplementary. So, we have
$\angle A + \angle D = {180^ \circ }$
$\Rightarrow$$\angle D = {180^ \circ } - \angle A$
Substitute the value of the angle $\angle A = 80^\circ $ into the equation.
$\Rightarrow$$\angle D = {180^ \circ } - {80^ \circ }$
$\Rightarrow$$\angle D = {100^ \circ }$
We know that, $\angle D$ can be express as:
$\Rightarrow$$\angle ADB + \angle BDC = \angle D$
As we know, that the diagonals of the Rhombus bisect the angles, so we can conclude that $BD$ dissect the angle $\angle D$, so we have$\angle ADB = \angle BDC$. Then,
$\Rightarrow$$2\angle BDC = {100^ \circ }$
$\Rightarrow$$\angle BDC = \dfrac{{{{100}^ \circ }}}{2}$
$\Rightarrow$$\angle BDC = {50^ \circ }$
So, the required measure of the angle,$\angle BDC = {50^ \circ }$.
Note: Alternative method:
We know that $\angle A = \angle C$ and $\angle B = \angle D$ (opposite angle of the Rhombus are equal)
We know that the sum of all the interior angles of the Rhombus is $360^\circ $. So, we have $\angle A + \angle B + \angle C + \angle D = 360$
Substitute $\angle A = \angle C$ and $\angle B = \angle D$ into the equation:
$\Rightarrow$$2\angle A + 2\angle D = 360$
$ \Rightarrow \angle A + \angle D = 180$
$\Rightarrow$$\angle D = {180^ \circ } - \angle A$
Now, we substitute the given angle,$\angle A = {80^ \circ }$into the equation:
$\Rightarrow$$\angle D = {180^ \circ } - {80^ \circ }$
$\Rightarrow$$\angle D = {100^ \circ }$
As we know, that the diagonals of the Rhombus bisect the angles, so we can conclude that $BD$ dissect the angle $\angle D$, so we have $\angle ADB = \angle BDC$. Then,
$\Rightarrow$$2\angle BDC = {100^ \circ }$
$\Rightarrow$$\angle BDC = \dfrac{{{{100}^ \circ }}}{2}$
$\Rightarrow$$\angle BDC = {50^ \circ }$
So, the required measure of the angle,$\angle BDC = {50^ \circ }$.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
At which age domestication of animals started A Neolithic class 11 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Summary of the poem Where the Mind is Without Fear class 8 english CBSE
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE