Answer
Verified
373.2k+ views
Hint: We know that, in a right triangle, the square of length of hypotenuse is equal to the sum of squares of the other two edges. Using this theorem, we can first find the length of side BD. And then, again by using the same theorem, we can find the value of $x$.
Complete step-by-step solution:
We have the following figure.
We can clearly see in the given figure that AB = AC, and it is also given that the triangle is isosceles.
Also, we can see that the measure of $\angle BDC={{90}^{\circ }}$.
We all know very well that the angles along a straight line is always equal to ${{180}^{\circ }}$.
Hence, we can say that $\angle BDC+\angle BDA={{180}^{\circ }}$.
We know that $\angle BDC={{90}^{\circ }}$. And so, we can say that
$\angle BDA={{180}^{\circ }}-{{90}^{\circ }}={{90}^{\circ }}$.
So, in triangle ABD, we can use the Pythagoras theorem. We have,
${{\left( AB \right)}^{2}}={{\left( BD \right)}^{2}}+{{\left( AD \right)}^{2}}$.
We can see that AB = 9 cm and AD = 7 cm.
Thus, we get
${{\left( 9 \right)}^{2}}={{\left( BD \right)}^{2}}+{{\left( 7 \right)}^{2}}$.
On simplification, we get
${{\left( BD \right)}^{2}}=81-49$.
Hence, we now have $BD=\sqrt{32}$ cm.
Now, using Pythagoras theorem in triangle BDC, we get
${{\left( BC \right)}^{2}}={{\left( BD \right)}^{2}}+{{\left( DC \right)}^{2}}$.
We now know that BD = $\sqrt{32}$ cm and DC = 2 cm. Thus, we get
${{\left( x \right)}^{2}}={{\left( \sqrt{32} \right)}^{2}}+{{\left( 2 \right)}^{2}}$.
We can simplify the above equation, to get
${{x}^{2}}=32+4$.
And so, we can write
$x=\sqrt{36}$.
Thus, $x=6$ cm.
Hence, the value of $x$ is 6 cm.
Note: We must note that the hypotenuse is the side opposite to the right angle, and we must take care of this while using the Pythagoras theorem. Also, we must take care that the length of any side of a triangle can never be a negative value. And so, we have ignored the value $x=-6$.
Complete step-by-step solution:
We have the following figure.
We can clearly see in the given figure that AB = AC, and it is also given that the triangle is isosceles.
Also, we can see that the measure of $\angle BDC={{90}^{\circ }}$.
We all know very well that the angles along a straight line is always equal to ${{180}^{\circ }}$.
Hence, we can say that $\angle BDC+\angle BDA={{180}^{\circ }}$.
We know that $\angle BDC={{90}^{\circ }}$. And so, we can say that
$\angle BDA={{180}^{\circ }}-{{90}^{\circ }}={{90}^{\circ }}$.
So, in triangle ABD, we can use the Pythagoras theorem. We have,
${{\left( AB \right)}^{2}}={{\left( BD \right)}^{2}}+{{\left( AD \right)}^{2}}$.
We can see that AB = 9 cm and AD = 7 cm.
Thus, we get
${{\left( 9 \right)}^{2}}={{\left( BD \right)}^{2}}+{{\left( 7 \right)}^{2}}$.
On simplification, we get
${{\left( BD \right)}^{2}}=81-49$.
Hence, we now have $BD=\sqrt{32}$ cm.
Now, using Pythagoras theorem in triangle BDC, we get
${{\left( BC \right)}^{2}}={{\left( BD \right)}^{2}}+{{\left( DC \right)}^{2}}$.
We now know that BD = $\sqrt{32}$ cm and DC = 2 cm. Thus, we get
${{\left( x \right)}^{2}}={{\left( \sqrt{32} \right)}^{2}}+{{\left( 2 \right)}^{2}}$.
We can simplify the above equation, to get
${{x}^{2}}=32+4$.
And so, we can write
$x=\sqrt{36}$.
Thus, $x=6$ cm.
Hence, the value of $x$ is 6 cm.
Note: We must note that the hypotenuse is the side opposite to the right angle, and we must take care of this while using the Pythagoras theorem. Also, we must take care that the length of any side of a triangle can never be a negative value. And so, we have ignored the value $x=-6$.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Choose the antonym of the word given below Furious class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE