Answer
Verified
445.8k+ views
Hint: In this question, first of all observe the diagram relating with the given information in the question to get the idea about what has been asked for as an answer & how we have to proceed stepwise. For solving the question, just use similarity property for triangles which are concerned with the given sides & angles. Have a look at an angle given of the triangle and according to the relation ratio of corresponding sides are proportional to get the answer.
Given information is $NT:AB = 9:5$.
Complete step-by-step answer:
We know in similarity – If two triangles are similar with respect to angles or sides, then corresponding sides are equal.
In $\Delta AMB$ & $\Delta NMT$-
$\angle MAB = \angle MTN$- (by given figure)
$\angle AMB = \angle NMT = {30^0}$ (common angle to both triangles)
$\angle MNT = \angle MBA$ (by given figure)
$\therefore \Delta AMB \sim \Delta NMT$ i.e, $\Delta AMB$ Hence $\Delta AMB$ is congruent to $\vartriangle NMT$.
$\therefore $Hence , the two triangles $\Delta AMB$ & $\vartriangle NMT$ are similar.
As $\dfrac{{AB}}{{NT}} = \dfrac{{MB}}{{MN}}$ & $MB = 10cm$ & $NT:AB = 9:5$, putting the values of
$\therefore \dfrac{5}{9} = \dfrac{{10}}{{MN}}$
$ \Rightarrow MN = 18cm$
$\therefore $ Length of $MN = 18cm$
Note: Triangles too have a lot of properties so the concept of congruence should be clear. This question is related to a similarity topic & it is the better way to solve these questions by just proving two triangles congruent to each other with the help of given information. Don’t forget to put the unit (cm here) because a number without any unit is meaningless.
Given information is $NT:AB = 9:5$.
Complete step-by-step answer:
We know in similarity – If two triangles are similar with respect to angles or sides, then corresponding sides are equal.
In $\Delta AMB$ & $\Delta NMT$-
$\angle MAB = \angle MTN$- (by given figure)
$\angle AMB = \angle NMT = {30^0}$ (common angle to both triangles)
$\angle MNT = \angle MBA$ (by given figure)
$\therefore \Delta AMB \sim \Delta NMT$ i.e, $\Delta AMB$ Hence $\Delta AMB$ is congruent to $\vartriangle NMT$.
$\therefore $Hence , the two triangles $\Delta AMB$ & $\vartriangle NMT$ are similar.
As $\dfrac{{AB}}{{NT}} = \dfrac{{MB}}{{MN}}$ & $MB = 10cm$ & $NT:AB = 9:5$, putting the values of
$\therefore \dfrac{5}{9} = \dfrac{{10}}{{MN}}$
$ \Rightarrow MN = 18cm$
$\therefore $ Length of $MN = 18cm$
Note: Triangles too have a lot of properties so the concept of congruence should be clear. This question is related to a similarity topic & it is the better way to solve these questions by just proving two triangles congruent to each other with the help of given information. Don’t forget to put the unit (cm here) because a number without any unit is meaningless.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference Between Plant Cell and Animal Cell
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE