
In the figure given below find the area of the shaded region where a circular arc of radius 6 cm has been drawn with vertex O of an equilateral triangle OAB of side 12 cm as center.

Answer
514.2k+ views
Hint: - Area of shaded region $ = $Area of circle$ + $Area of equilateral triangle$ - $area of
common region.
Given data:
Radius of circle$\left( r \right) = 6m$
Side of an equilateral triangle$\left( a \right) = 12cm$
As we know area of circle$ = \pi {r^2} = \dfrac{{22}}{7} \times {6^2} = \dfrac{{792}}{7}c{m^2}$
Now as we know area of equilateral triangle$ = \dfrac{{\sqrt 3 }}{4}{a^2} = \dfrac{{\sqrt 3 }}{4} \times
{12^2} = 36\sqrt 3 c{m^2}$
Area of common region (i.e. between circle and equilateral triangle)
$ \Rightarrow \left( {\dfrac{\theta }{{{{360}^0}}}} \right)\pi {r^2}$
As we know in equilateral triangles all angles equal to${60^0}$.
\[ \Rightarrow \angle {\text{AOB}} = {60^0} = \theta \]
Therefore area of common region$ = \left( {\dfrac{\theta }{{{{360}^0}}}} \right)\pi {r^2} =
\dfrac{{{{60}^0}}}{{{{360}^0}}} \times \dfrac{{22}}{7} \times {6^2} = \dfrac{{132}}{7}c{m^2}$
Therefore, the area of the shaded region$\left( A \right)$$ = $Area of circle$ + $Area of equilateral
triangle$ - $area of the common region.
$ \Rightarrow \left( A \right) = \dfrac{{792}}{7} + 36\sqrt 3 - \dfrac{{132}}{7} = \left( {\dfrac{{660}}{7} +
36\sqrt 3 } \right)c{m^2}$
So, this is the required answer.
Note: -In such types of questions always remember the formula of area of standard shapes which is
stated above, then first find out the area of circle then find out the area of triangle then find out the
area of common region, then find out the area of shaded region using the formula which is stated above
then simplify we will get the required answer.
common region.
Given data:
Radius of circle$\left( r \right) = 6m$
Side of an equilateral triangle$\left( a \right) = 12cm$
As we know area of circle$ = \pi {r^2} = \dfrac{{22}}{7} \times {6^2} = \dfrac{{792}}{7}c{m^2}$
Now as we know area of equilateral triangle$ = \dfrac{{\sqrt 3 }}{4}{a^2} = \dfrac{{\sqrt 3 }}{4} \times
{12^2} = 36\sqrt 3 c{m^2}$
Area of common region (i.e. between circle and equilateral triangle)
$ \Rightarrow \left( {\dfrac{\theta }{{{{360}^0}}}} \right)\pi {r^2}$
As we know in equilateral triangles all angles equal to${60^0}$.
\[ \Rightarrow \angle {\text{AOB}} = {60^0} = \theta \]
Therefore area of common region$ = \left( {\dfrac{\theta }{{{{360}^0}}}} \right)\pi {r^2} =
\dfrac{{{{60}^0}}}{{{{360}^0}}} \times \dfrac{{22}}{7} \times {6^2} = \dfrac{{132}}{7}c{m^2}$
Therefore, the area of the shaded region$\left( A \right)$$ = $Area of circle$ + $Area of equilateral
triangle$ - $area of the common region.
$ \Rightarrow \left( A \right) = \dfrac{{792}}{7} + 36\sqrt 3 - \dfrac{{132}}{7} = \left( {\dfrac{{660}}{7} +
36\sqrt 3 } \right)c{m^2}$
So, this is the required answer.
Note: -In such types of questions always remember the formula of area of standard shapes which is
stated above, then first find out the area of circle then find out the area of triangle then find out the
area of common region, then find out the area of shaded region using the formula which is stated above
then simplify we will get the required answer.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Express the following as a fraction and simplify a class 7 maths CBSE

The length and width of a rectangle are in ratio of class 7 maths CBSE

The ratio of the income to the expenditure of a family class 7 maths CBSE

How do you write 025 million in scientific notatio class 7 maths CBSE

How do you convert 295 meters per second to kilometers class 7 maths CBSE

Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Why is there a time difference of about 5 hours between class 10 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Explain the Treaty of Vienna of 1815 class 10 social science CBSE

Write an application to the principal requesting five class 10 english CBSE
