
In the figure, a circle touches the side DF of ∆EDF at H and touches ED and EF produced at K and M respectively. If EK = 9cm, then the perimeter of ∆EDF (in cm) is:
A. 18
B. 13.5
C. 12
D. 9
Answer
605.7k+ views
Hint: EK and EM are tangents to the circle. Tangent segments to a circle from the same external point are congruent, (i.e. equal in lengths). Use this in finding the perimeter.
Complete step-by-step answer:
Given Data - A circle touches ED and EF at K and M respectively.
That makes EK and EM the tangents of the circle.
From the concepts of circles, we know that tangent segments to a circle from the same external point are congruent, (i.e. equal in lengths)
Given EK = 9cm
Therefore, EM = EK = 9cm (the exterior point is E)
Now, EK + EM = 18cm
We can write, EK = ED + DK and EM = EF + FM
⟹ED + DK + EF + FM = 18cm
Again from the exterior point D there are two tangents to the circle DK and DH and from exterior point F there are two tangents to the circle FH and FM.
Hence, DK = DH and FH = FM
⟹ED + DH + FH + EF = 18cm (FH = HF) - These are interchangeable
We can write DH + HF = DF
⟹ED + DF + EF = 18 cm
The perimeter of a triangle = sum of all sides
The perimeter of a ∆ EDF = ED + DF + EF
= 18 cm
Note: In such problems having a complete understanding of the concept of circles is very important. Here we used the concept of tangents, where tangent segments to a circle from the same external point are congruent (i.e. equal in length).
A tangent from a given point to a circle is a straight line which touches the circle at only one point.
Complete step-by-step answer:
Given Data - A circle touches ED and EF at K and M respectively.
That makes EK and EM the tangents of the circle.
From the concepts of circles, we know that tangent segments to a circle from the same external point are congruent, (i.e. equal in lengths)
Given EK = 9cm
Therefore, EM = EK = 9cm (the exterior point is E)
Now, EK + EM = 18cm
We can write, EK = ED + DK and EM = EF + FM
⟹ED + DK + EF + FM = 18cm
Again from the exterior point D there are two tangents to the circle DK and DH and from exterior point F there are two tangents to the circle FH and FM.
Hence, DK = DH and FH = FM
⟹ED + DH + FH + EF = 18cm (FH = HF) - These are interchangeable
We can write DH + HF = DF
⟹ED + DF + EF = 18 cm
The perimeter of a triangle = sum of all sides
The perimeter of a ∆ EDF = ED + DF + EF
= 18 cm
Note: In such problems having a complete understanding of the concept of circles is very important. Here we used the concept of tangents, where tangent segments to a circle from the same external point are congruent (i.e. equal in length).
A tangent from a given point to a circle is a straight line which touches the circle at only one point.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

