
In the expression 3n -10, substitute values 1, 2, 3, 4 and 5 for n and write the values of the expressions in order. State with reason, whether the sequence obtained is an AP.
Answer
605.1k+ views
Hint:Given the values of n. Substitute the values in the expression and formulate the series. Prove that the series is in arithmetic progression. So, check that the common difference is the same between two consecutive numbers.
Complete step-by-step answer:
AP is an arithmetic progression. It is a sequence of numbers such that the difference between the consecutive terms is constant. Difference here means the second term minus the first term.
Let us consider ‘d’ as the common difference of the Arithmetic Progression and d is a natural number.
Given the values of n = 1, 2, 3, 4, 5.
Now, substitute these values of n in the expression (3n -10).
When n = 1\[\Rightarrow 3\times 1-10=3-10=-7\].
When n = 2 \[\Rightarrow 3\times 2-10=6-10=-4\].
When n = 3 \[\Rightarrow 3\times 3-10=9-10=-1\].
When n =4 \[\Rightarrow 3\times 4-10=12-10=2\].
When n =5 \[\Rightarrow 3\times 5-10=15-10=5\].
Let us check if -7, -4, -1, 2 and 5 are in AP.
To find if it’s an AP, we should prove that two consecutive terms should have some common difference.
Let us take the 1st and 2nd term.
Common difference = 2nd term - 1st term.
\[\therefore d=-4-\left( -7 \right)=-4+7=3\]
Now check the difference between 2nd term and 3rd term,
\[d=-1-\left( -4 \right)=-1+4=3\]
Check the difference between 3rd term and 4th term.
\[d=2-\left( -1 \right)2+1=3\]
Check the difference is the same for the series.
\[d=5-2=3\]
\[\therefore \]The common difference is the same for the series.
-7, -4, -1, 2, 5
So, the given series is in AP.
Hence proved.
Note:
If we have received different common differences for two consecutive terms, then the series won’t be in Arithmetic progression (AP).
Remember the formula for taking common difference (d). It is the 2nd term minus the 1st term and not the 1st term minus the 2nd term.
Complete step-by-step answer:
AP is an arithmetic progression. It is a sequence of numbers such that the difference between the consecutive terms is constant. Difference here means the second term minus the first term.
Let us consider ‘d’ as the common difference of the Arithmetic Progression and d is a natural number.
Given the values of n = 1, 2, 3, 4, 5.
Now, substitute these values of n in the expression (3n -10).
When n = 1\[\Rightarrow 3\times 1-10=3-10=-7\].
When n = 2 \[\Rightarrow 3\times 2-10=6-10=-4\].
When n = 3 \[\Rightarrow 3\times 3-10=9-10=-1\].
When n =4 \[\Rightarrow 3\times 4-10=12-10=2\].
When n =5 \[\Rightarrow 3\times 5-10=15-10=5\].
Let us check if -7, -4, -1, 2 and 5 are in AP.
To find if it’s an AP, we should prove that two consecutive terms should have some common difference.
Let us take the 1st and 2nd term.
Common difference = 2nd term - 1st term.
\[\therefore d=-4-\left( -7 \right)=-4+7=3\]
Now check the difference between 2nd term and 3rd term,
\[d=-1-\left( -4 \right)=-1+4=3\]
Check the difference between 3rd term and 4th term.
\[d=2-\left( -1 \right)2+1=3\]
Check the difference is the same for the series.
\[d=5-2=3\]
\[\therefore \]The common difference is the same for the series.
-7, -4, -1, 2, 5
So, the given series is in AP.
Hence proved.
Note:
If we have received different common differences for two consecutive terms, then the series won’t be in Arithmetic progression (AP).
Remember the formula for taking common difference (d). It is the 2nd term minus the 1st term and not the 1st term minus the 2nd term.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

