In the equation ${x^4} - p{x^3} + q{x^2} - rx + s = 0$, prove that if the sum of two of the roots is equal to the sum of the other two ${p^3} - 4pq + 8r = 0$; and that if the product of the two of the roots is equal to the product of the other two ${r^2} = {p^2}s$.
Last updated date: 19th Mar 2023
•
Total views: 309k
•
Views today: 6.88k
Answer
309k+ views
Hint: Use identities of the Quadratic polynomial and simply solve them.
Given: ${x^4} - p{x^3} + q{x^2} - rx + s = 0{\text{ }} \ldots \left( 1 \right)$
Let the four roots of the given quadratic polynomial be $\alpha ,\beta ,\gamma ,\delta $
Case 1: Sum of two roots is equal to the sum of other two roots,
$\therefore \alpha + \delta = \beta + \gamma {\text{ }} \ldots \left( 2 \right)$
General quadratic equation: $a{x^4} + b{x^3} + c{x^2} + dx + e = 0{\text{ }} \ldots \left( 3 \right)$
Comparing equation (1) and (3), we get:
$a = 1,{\text{ }}b = - p,{\text{ }}c = q,{\text{ }}d = - r,{\text{ }}e = s{\text{ }} \ldots \left( 4 \right)$
As we know, the sum of roots of a quadratic equation is $ - \dfrac{b}{a}$ .
$
\Rightarrow \alpha + \beta + \gamma + \delta = - \dfrac{b}{a} \\
\Rightarrow \alpha + \beta + \gamma + \delta = - \left( {\dfrac{{ - p}}{1}} \right){\text{ }}\left( {{\text{using }}\left( 4 \right)} \right) \\
\Rightarrow \alpha + \beta + \gamma + \delta = p \\
\Rightarrow \alpha + \beta = \gamma + \delta = \dfrac{p}{2}{\text{ }}\left( {{\text{using }}\left( 2 \right)} \right) \ldots \ldots \left( 5 \right) \\
$
Also, the sum of products of roots of a quadratic equation is $\dfrac{c}{a}$ .
$
\Rightarrow \alpha \beta + \alpha \gamma + \alpha \delta + \beta \gamma + \beta \delta + \gamma \delta = \dfrac{c}{a} \\
\Rightarrow \left( {\alpha + \delta } \right)\left( {\beta + \gamma } \right) + \alpha \delta + \beta \gamma = q{\text{ }}\left( {{\text{using }}\left( 4 \right)} \right) \\
$
Now, substituting values of $\left( {\alpha + \delta } \right)$and $\left( {\beta + \gamma } \right)$from equation (5), we get:
$
\Rightarrow \left( {\dfrac{p}{2}} \right)\left( {\dfrac{p}{2}} \right) + \alpha \delta + \beta \gamma = q{\text{ }}\left( {{\text{using }}\left( 5 \right)} \right) \\
\Rightarrow \alpha \delta + \beta \gamma = q - \dfrac{{{p^2}}}{4}{\text{ }} \ldots \left( 6 \right) \\
$
Now, the sum of products of roots of a quadratic equation is $r$.
$
\Rightarrow \alpha \beta \gamma + \alpha \beta \delta + \alpha \gamma \delta + \beta \gamma \delta = r \\
\Rightarrow \beta \gamma \left( {\alpha + \delta } \right) + \alpha \delta \left( {\beta + \gamma } \right) = r \\
$
Now, substituting values of $\left( {\alpha + \delta } \right)$and $\left( {\beta + \gamma } \right)$from equation (5), we get:
$ \Rightarrow \beta \gamma \left( {\dfrac{p}{2}} \right) + \alpha \delta \left( {\dfrac{p}{2}} \right) = r{\text{ }}\left( {{\text{using }}\left( 5 \right)} \right)$
Taking $\dfrac{p}{2}$ common, we get:
$ \Rightarrow \dfrac{p}{2}\left( {\beta \gamma + \alpha \delta } \right) = r{\text{ }} \ldots \left( 7 \right)$
Putting value of $\left( {\beta \gamma + \alpha \delta } \right)$from equation (6), we get:
$
\Rightarrow \dfrac{p}{2}\left( {q - \dfrac{{{p^2}}}{4}} \right) = r{\text{ }}\left( {{\text{using }}\left( 6 \right)} \right) \\
\Rightarrow {p^3} - 4pq + 8r = 0 \\
$
Case 2: Product of two roots is equal to the product of other two roots, therefore $\alpha \delta = \beta \gamma {\text{ }} \ldots \left( 8 \right)$
We know: $\alpha \beta \gamma + \alpha \beta \delta + \alpha \gamma \delta + \beta \gamma \delta = r$
$
\Rightarrow \beta \gamma \left( {\alpha + \delta } \right) + \alpha \delta \left( {\beta + \gamma } \right) = r \\
\Rightarrow \alpha \delta \left( {\alpha + \beta + \gamma + \delta } \right) = r \\
\Rightarrow \alpha \delta = \beta \gamma = \dfrac{r}{p}{\text{ }}\left( {\because {\text{sum of roots is p}}} \right) \\
$
Now, $\alpha \beta \gamma \delta = \left( {\alpha \delta } \right)\left( {\beta \gamma } \right)$
Putting values of $\alpha \delta $and $\beta \gamma $, we get:
$\alpha \beta \gamma \delta = \left( {\dfrac{r}{p}} \right)\left( {\dfrac{r}{p}} \right) = s$
$
\therefore \dfrac{{{r^2}}}{{{p^2}}} = s \\
{r^2} = {p^2}s \\
$
Hence Proved.
Note: Whenever there are polynomial equations and you have to prove something related to their roots, always try to use the polynomial identities like sum of roots, product of roots etc. and try to obtain relations between them.
Given: ${x^4} - p{x^3} + q{x^2} - rx + s = 0{\text{ }} \ldots \left( 1 \right)$
Let the four roots of the given quadratic polynomial be $\alpha ,\beta ,\gamma ,\delta $
Case 1: Sum of two roots is equal to the sum of other two roots,
$\therefore \alpha + \delta = \beta + \gamma {\text{ }} \ldots \left( 2 \right)$
General quadratic equation: $a{x^4} + b{x^3} + c{x^2} + dx + e = 0{\text{ }} \ldots \left( 3 \right)$
Comparing equation (1) and (3), we get:
$a = 1,{\text{ }}b = - p,{\text{ }}c = q,{\text{ }}d = - r,{\text{ }}e = s{\text{ }} \ldots \left( 4 \right)$
As we know, the sum of roots of a quadratic equation is $ - \dfrac{b}{a}$ .
$
\Rightarrow \alpha + \beta + \gamma + \delta = - \dfrac{b}{a} \\
\Rightarrow \alpha + \beta + \gamma + \delta = - \left( {\dfrac{{ - p}}{1}} \right){\text{ }}\left( {{\text{using }}\left( 4 \right)} \right) \\
\Rightarrow \alpha + \beta + \gamma + \delta = p \\
\Rightarrow \alpha + \beta = \gamma + \delta = \dfrac{p}{2}{\text{ }}\left( {{\text{using }}\left( 2 \right)} \right) \ldots \ldots \left( 5 \right) \\
$
Also, the sum of products of roots of a quadratic equation is $\dfrac{c}{a}$ .
$
\Rightarrow \alpha \beta + \alpha \gamma + \alpha \delta + \beta \gamma + \beta \delta + \gamma \delta = \dfrac{c}{a} \\
\Rightarrow \left( {\alpha + \delta } \right)\left( {\beta + \gamma } \right) + \alpha \delta + \beta \gamma = q{\text{ }}\left( {{\text{using }}\left( 4 \right)} \right) \\
$
Now, substituting values of $\left( {\alpha + \delta } \right)$and $\left( {\beta + \gamma } \right)$from equation (5), we get:
$
\Rightarrow \left( {\dfrac{p}{2}} \right)\left( {\dfrac{p}{2}} \right) + \alpha \delta + \beta \gamma = q{\text{ }}\left( {{\text{using }}\left( 5 \right)} \right) \\
\Rightarrow \alpha \delta + \beta \gamma = q - \dfrac{{{p^2}}}{4}{\text{ }} \ldots \left( 6 \right) \\
$
Now, the sum of products of roots of a quadratic equation is $r$.
$
\Rightarrow \alpha \beta \gamma + \alpha \beta \delta + \alpha \gamma \delta + \beta \gamma \delta = r \\
\Rightarrow \beta \gamma \left( {\alpha + \delta } \right) + \alpha \delta \left( {\beta + \gamma } \right) = r \\
$
Now, substituting values of $\left( {\alpha + \delta } \right)$and $\left( {\beta + \gamma } \right)$from equation (5), we get:
$ \Rightarrow \beta \gamma \left( {\dfrac{p}{2}} \right) + \alpha \delta \left( {\dfrac{p}{2}} \right) = r{\text{ }}\left( {{\text{using }}\left( 5 \right)} \right)$
Taking $\dfrac{p}{2}$ common, we get:
$ \Rightarrow \dfrac{p}{2}\left( {\beta \gamma + \alpha \delta } \right) = r{\text{ }} \ldots \left( 7 \right)$
Putting value of $\left( {\beta \gamma + \alpha \delta } \right)$from equation (6), we get:
$
\Rightarrow \dfrac{p}{2}\left( {q - \dfrac{{{p^2}}}{4}} \right) = r{\text{ }}\left( {{\text{using }}\left( 6 \right)} \right) \\
\Rightarrow {p^3} - 4pq + 8r = 0 \\
$
Case 2: Product of two roots is equal to the product of other two roots, therefore $\alpha \delta = \beta \gamma {\text{ }} \ldots \left( 8 \right)$
We know: $\alpha \beta \gamma + \alpha \beta \delta + \alpha \gamma \delta + \beta \gamma \delta = r$
$
\Rightarrow \beta \gamma \left( {\alpha + \delta } \right) + \alpha \delta \left( {\beta + \gamma } \right) = r \\
\Rightarrow \alpha \delta \left( {\alpha + \beta + \gamma + \delta } \right) = r \\
\Rightarrow \alpha \delta = \beta \gamma = \dfrac{r}{p}{\text{ }}\left( {\because {\text{sum of roots is p}}} \right) \\
$
Now, $\alpha \beta \gamma \delta = \left( {\alpha \delta } \right)\left( {\beta \gamma } \right)$
Putting values of $\alpha \delta $and $\beta \gamma $, we get:
$\alpha \beta \gamma \delta = \left( {\dfrac{r}{p}} \right)\left( {\dfrac{r}{p}} \right) = s$
$
\therefore \dfrac{{{r^2}}}{{{p^2}}} = s \\
{r^2} = {p^2}s \\
$
Hence Proved.
Note: Whenever there are polynomial equations and you have to prove something related to their roots, always try to use the polynomial identities like sum of roots, product of roots etc. and try to obtain relations between them.
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE
