![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
In the equation ${x^4} - p{x^3} + q{x^2} - rx + s = 0$, prove that if the sum of two of the roots is equal to the sum of the other two ${p^3} - 4pq + 8r = 0$; and that if the product of the two of the roots is equal to the product of the other two ${r^2} = {p^2}s$.
Answer
507.9k+ views
Hint: Use identities of the Quadratic polynomial and simply solve them.
Given: ${x^4} - p{x^3} + q{x^2} - rx + s = 0{\text{ }} \ldots \left( 1 \right)$
Let the four roots of the given quadratic polynomial be $\alpha ,\beta ,\gamma ,\delta $
Case 1: Sum of two roots is equal to the sum of other two roots,
$\therefore \alpha + \delta = \beta + \gamma {\text{ }} \ldots \left( 2 \right)$
General quadratic equation: $a{x^4} + b{x^3} + c{x^2} + dx + e = 0{\text{ }} \ldots \left( 3 \right)$
Comparing equation (1) and (3), we get:
$a = 1,{\text{ }}b = - p,{\text{ }}c = q,{\text{ }}d = - r,{\text{ }}e = s{\text{ }} \ldots \left( 4 \right)$
As we know, the sum of roots of a quadratic equation is $ - \dfrac{b}{a}$ .
$
\Rightarrow \alpha + \beta + \gamma + \delta = - \dfrac{b}{a} \\
\Rightarrow \alpha + \beta + \gamma + \delta = - \left( {\dfrac{{ - p}}{1}} \right){\text{ }}\left( {{\text{using }}\left( 4 \right)} \right) \\
\Rightarrow \alpha + \beta + \gamma + \delta = p \\
\Rightarrow \alpha + \beta = \gamma + \delta = \dfrac{p}{2}{\text{ }}\left( {{\text{using }}\left( 2 \right)} \right) \ldots \ldots \left( 5 \right) \\
$
Also, the sum of products of roots of a quadratic equation is $\dfrac{c}{a}$ .
$
\Rightarrow \alpha \beta + \alpha \gamma + \alpha \delta + \beta \gamma + \beta \delta + \gamma \delta = \dfrac{c}{a} \\
\Rightarrow \left( {\alpha + \delta } \right)\left( {\beta + \gamma } \right) + \alpha \delta + \beta \gamma = q{\text{ }}\left( {{\text{using }}\left( 4 \right)} \right) \\
$
Now, substituting values of $\left( {\alpha + \delta } \right)$and $\left( {\beta + \gamma } \right)$from equation (5), we get:
$
\Rightarrow \left( {\dfrac{p}{2}} \right)\left( {\dfrac{p}{2}} \right) + \alpha \delta + \beta \gamma = q{\text{ }}\left( {{\text{using }}\left( 5 \right)} \right) \\
\Rightarrow \alpha \delta + \beta \gamma = q - \dfrac{{{p^2}}}{4}{\text{ }} \ldots \left( 6 \right) \\
$
Now, the sum of products of roots of a quadratic equation is $r$.
$
\Rightarrow \alpha \beta \gamma + \alpha \beta \delta + \alpha \gamma \delta + \beta \gamma \delta = r \\
\Rightarrow \beta \gamma \left( {\alpha + \delta } \right) + \alpha \delta \left( {\beta + \gamma } \right) = r \\
$
Now, substituting values of $\left( {\alpha + \delta } \right)$and $\left( {\beta + \gamma } \right)$from equation (5), we get:
$ \Rightarrow \beta \gamma \left( {\dfrac{p}{2}} \right) + \alpha \delta \left( {\dfrac{p}{2}} \right) = r{\text{ }}\left( {{\text{using }}\left( 5 \right)} \right)$
Taking $\dfrac{p}{2}$ common, we get:
$ \Rightarrow \dfrac{p}{2}\left( {\beta \gamma + \alpha \delta } \right) = r{\text{ }} \ldots \left( 7 \right)$
Putting value of $\left( {\beta \gamma + \alpha \delta } \right)$from equation (6), we get:
$
\Rightarrow \dfrac{p}{2}\left( {q - \dfrac{{{p^2}}}{4}} \right) = r{\text{ }}\left( {{\text{using }}\left( 6 \right)} \right) \\
\Rightarrow {p^3} - 4pq + 8r = 0 \\
$
Case 2: Product of two roots is equal to the product of other two roots, therefore $\alpha \delta = \beta \gamma {\text{ }} \ldots \left( 8 \right)$
We know: $\alpha \beta \gamma + \alpha \beta \delta + \alpha \gamma \delta + \beta \gamma \delta = r$
$
\Rightarrow \beta \gamma \left( {\alpha + \delta } \right) + \alpha \delta \left( {\beta + \gamma } \right) = r \\
\Rightarrow \alpha \delta \left( {\alpha + \beta + \gamma + \delta } \right) = r \\
\Rightarrow \alpha \delta = \beta \gamma = \dfrac{r}{p}{\text{ }}\left( {\because {\text{sum of roots is p}}} \right) \\
$
Now, $\alpha \beta \gamma \delta = \left( {\alpha \delta } \right)\left( {\beta \gamma } \right)$
Putting values of $\alpha \delta $and $\beta \gamma $, we get:
$\alpha \beta \gamma \delta = \left( {\dfrac{r}{p}} \right)\left( {\dfrac{r}{p}} \right) = s$
$
\therefore \dfrac{{{r^2}}}{{{p^2}}} = s \\
{r^2} = {p^2}s \\
$
Hence Proved.
Note: Whenever there are polynomial equations and you have to prove something related to their roots, always try to use the polynomial identities like sum of roots, product of roots etc. and try to obtain relations between them.
Given: ${x^4} - p{x^3} + q{x^2} - rx + s = 0{\text{ }} \ldots \left( 1 \right)$
Let the four roots of the given quadratic polynomial be $\alpha ,\beta ,\gamma ,\delta $
Case 1: Sum of two roots is equal to the sum of other two roots,
$\therefore \alpha + \delta = \beta + \gamma {\text{ }} \ldots \left( 2 \right)$
General quadratic equation: $a{x^4} + b{x^3} + c{x^2} + dx + e = 0{\text{ }} \ldots \left( 3 \right)$
Comparing equation (1) and (3), we get:
$a = 1,{\text{ }}b = - p,{\text{ }}c = q,{\text{ }}d = - r,{\text{ }}e = s{\text{ }} \ldots \left( 4 \right)$
As we know, the sum of roots of a quadratic equation is $ - \dfrac{b}{a}$ .
$
\Rightarrow \alpha + \beta + \gamma + \delta = - \dfrac{b}{a} \\
\Rightarrow \alpha + \beta + \gamma + \delta = - \left( {\dfrac{{ - p}}{1}} \right){\text{ }}\left( {{\text{using }}\left( 4 \right)} \right) \\
\Rightarrow \alpha + \beta + \gamma + \delta = p \\
\Rightarrow \alpha + \beta = \gamma + \delta = \dfrac{p}{2}{\text{ }}\left( {{\text{using }}\left( 2 \right)} \right) \ldots \ldots \left( 5 \right) \\
$
Also, the sum of products of roots of a quadratic equation is $\dfrac{c}{a}$ .
$
\Rightarrow \alpha \beta + \alpha \gamma + \alpha \delta + \beta \gamma + \beta \delta + \gamma \delta = \dfrac{c}{a} \\
\Rightarrow \left( {\alpha + \delta } \right)\left( {\beta + \gamma } \right) + \alpha \delta + \beta \gamma = q{\text{ }}\left( {{\text{using }}\left( 4 \right)} \right) \\
$
Now, substituting values of $\left( {\alpha + \delta } \right)$and $\left( {\beta + \gamma } \right)$from equation (5), we get:
$
\Rightarrow \left( {\dfrac{p}{2}} \right)\left( {\dfrac{p}{2}} \right) + \alpha \delta + \beta \gamma = q{\text{ }}\left( {{\text{using }}\left( 5 \right)} \right) \\
\Rightarrow \alpha \delta + \beta \gamma = q - \dfrac{{{p^2}}}{4}{\text{ }} \ldots \left( 6 \right) \\
$
Now, the sum of products of roots of a quadratic equation is $r$.
$
\Rightarrow \alpha \beta \gamma + \alpha \beta \delta + \alpha \gamma \delta + \beta \gamma \delta = r \\
\Rightarrow \beta \gamma \left( {\alpha + \delta } \right) + \alpha \delta \left( {\beta + \gamma } \right) = r \\
$
Now, substituting values of $\left( {\alpha + \delta } \right)$and $\left( {\beta + \gamma } \right)$from equation (5), we get:
$ \Rightarrow \beta \gamma \left( {\dfrac{p}{2}} \right) + \alpha \delta \left( {\dfrac{p}{2}} \right) = r{\text{ }}\left( {{\text{using }}\left( 5 \right)} \right)$
Taking $\dfrac{p}{2}$ common, we get:
$ \Rightarrow \dfrac{p}{2}\left( {\beta \gamma + \alpha \delta } \right) = r{\text{ }} \ldots \left( 7 \right)$
Putting value of $\left( {\beta \gamma + \alpha \delta } \right)$from equation (6), we get:
$
\Rightarrow \dfrac{p}{2}\left( {q - \dfrac{{{p^2}}}{4}} \right) = r{\text{ }}\left( {{\text{using }}\left( 6 \right)} \right) \\
\Rightarrow {p^3} - 4pq + 8r = 0 \\
$
Case 2: Product of two roots is equal to the product of other two roots, therefore $\alpha \delta = \beta \gamma {\text{ }} \ldots \left( 8 \right)$
We know: $\alpha \beta \gamma + \alpha \beta \delta + \alpha \gamma \delta + \beta \gamma \delta = r$
$
\Rightarrow \beta \gamma \left( {\alpha + \delta } \right) + \alpha \delta \left( {\beta + \gamma } \right) = r \\
\Rightarrow \alpha \delta \left( {\alpha + \beta + \gamma + \delta } \right) = r \\
\Rightarrow \alpha \delta = \beta \gamma = \dfrac{r}{p}{\text{ }}\left( {\because {\text{sum of roots is p}}} \right) \\
$
Now, $\alpha \beta \gamma \delta = \left( {\alpha \delta } \right)\left( {\beta \gamma } \right)$
Putting values of $\alpha \delta $and $\beta \gamma $, we get:
$\alpha \beta \gamma \delta = \left( {\dfrac{r}{p}} \right)\left( {\dfrac{r}{p}} \right) = s$
$
\therefore \dfrac{{{r^2}}}{{{p^2}}} = s \\
{r^2} = {p^2}s \\
$
Hence Proved.
Note: Whenever there are polynomial equations and you have to prove something related to their roots, always try to use the polynomial identities like sum of roots, product of roots etc. and try to obtain relations between them.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Master Class 10 Computer Science: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Master Class 10 Science: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Master Class 10 Social Science: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Master Class 10 Maths: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Master Class 10 English: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Why is there a time difference of about 5 hours between class 10 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Change the following sentences into negative and interrogative class 10 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Write a letter to the principal requesting him to grant class 10 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The capital of British India was transferred from Calcutta class 10 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)