Answer
Verified
479.4k+ views
Hint: Use identities of the Quadratic polynomial and simply solve them.
Given: ${x^4} - p{x^3} + q{x^2} - rx + s = 0{\text{ }} \ldots \left( 1 \right)$
Let the four roots of the given quadratic polynomial be $\alpha ,\beta ,\gamma ,\delta $
Case 1: Sum of two roots is equal to the sum of other two roots,
$\therefore \alpha + \delta = \beta + \gamma {\text{ }} \ldots \left( 2 \right)$
General quadratic equation: $a{x^4} + b{x^3} + c{x^2} + dx + e = 0{\text{ }} \ldots \left( 3 \right)$
Comparing equation (1) and (3), we get:
$a = 1,{\text{ }}b = - p,{\text{ }}c = q,{\text{ }}d = - r,{\text{ }}e = s{\text{ }} \ldots \left( 4 \right)$
As we know, the sum of roots of a quadratic equation is $ - \dfrac{b}{a}$ .
$
\Rightarrow \alpha + \beta + \gamma + \delta = - \dfrac{b}{a} \\
\Rightarrow \alpha + \beta + \gamma + \delta = - \left( {\dfrac{{ - p}}{1}} \right){\text{ }}\left( {{\text{using }}\left( 4 \right)} \right) \\
\Rightarrow \alpha + \beta + \gamma + \delta = p \\
\Rightarrow \alpha + \beta = \gamma + \delta = \dfrac{p}{2}{\text{ }}\left( {{\text{using }}\left( 2 \right)} \right) \ldots \ldots \left( 5 \right) \\
$
Also, the sum of products of roots of a quadratic equation is $\dfrac{c}{a}$ .
$
\Rightarrow \alpha \beta + \alpha \gamma + \alpha \delta + \beta \gamma + \beta \delta + \gamma \delta = \dfrac{c}{a} \\
\Rightarrow \left( {\alpha + \delta } \right)\left( {\beta + \gamma } \right) + \alpha \delta + \beta \gamma = q{\text{ }}\left( {{\text{using }}\left( 4 \right)} \right) \\
$
Now, substituting values of $\left( {\alpha + \delta } \right)$and $\left( {\beta + \gamma } \right)$from equation (5), we get:
$
\Rightarrow \left( {\dfrac{p}{2}} \right)\left( {\dfrac{p}{2}} \right) + \alpha \delta + \beta \gamma = q{\text{ }}\left( {{\text{using }}\left( 5 \right)} \right) \\
\Rightarrow \alpha \delta + \beta \gamma = q - \dfrac{{{p^2}}}{4}{\text{ }} \ldots \left( 6 \right) \\
$
Now, the sum of products of roots of a quadratic equation is $r$.
$
\Rightarrow \alpha \beta \gamma + \alpha \beta \delta + \alpha \gamma \delta + \beta \gamma \delta = r \\
\Rightarrow \beta \gamma \left( {\alpha + \delta } \right) + \alpha \delta \left( {\beta + \gamma } \right) = r \\
$
Now, substituting values of $\left( {\alpha + \delta } \right)$and $\left( {\beta + \gamma } \right)$from equation (5), we get:
$ \Rightarrow \beta \gamma \left( {\dfrac{p}{2}} \right) + \alpha \delta \left( {\dfrac{p}{2}} \right) = r{\text{ }}\left( {{\text{using }}\left( 5 \right)} \right)$
Taking $\dfrac{p}{2}$ common, we get:
$ \Rightarrow \dfrac{p}{2}\left( {\beta \gamma + \alpha \delta } \right) = r{\text{ }} \ldots \left( 7 \right)$
Putting value of $\left( {\beta \gamma + \alpha \delta } \right)$from equation (6), we get:
$
\Rightarrow \dfrac{p}{2}\left( {q - \dfrac{{{p^2}}}{4}} \right) = r{\text{ }}\left( {{\text{using }}\left( 6 \right)} \right) \\
\Rightarrow {p^3} - 4pq + 8r = 0 \\
$
Case 2: Product of two roots is equal to the product of other two roots, therefore $\alpha \delta = \beta \gamma {\text{ }} \ldots \left( 8 \right)$
We know: $\alpha \beta \gamma + \alpha \beta \delta + \alpha \gamma \delta + \beta \gamma \delta = r$
$
\Rightarrow \beta \gamma \left( {\alpha + \delta } \right) + \alpha \delta \left( {\beta + \gamma } \right) = r \\
\Rightarrow \alpha \delta \left( {\alpha + \beta + \gamma + \delta } \right) = r \\
\Rightarrow \alpha \delta = \beta \gamma = \dfrac{r}{p}{\text{ }}\left( {\because {\text{sum of roots is p}}} \right) \\
$
Now, $\alpha \beta \gamma \delta = \left( {\alpha \delta } \right)\left( {\beta \gamma } \right)$
Putting values of $\alpha \delta $and $\beta \gamma $, we get:
$\alpha \beta \gamma \delta = \left( {\dfrac{r}{p}} \right)\left( {\dfrac{r}{p}} \right) = s$
$
\therefore \dfrac{{{r^2}}}{{{p^2}}} = s \\
{r^2} = {p^2}s \\
$
Hence Proved.
Note: Whenever there are polynomial equations and you have to prove something related to their roots, always try to use the polynomial identities like sum of roots, product of roots etc. and try to obtain relations between them.
Given: ${x^4} - p{x^3} + q{x^2} - rx + s = 0{\text{ }} \ldots \left( 1 \right)$
Let the four roots of the given quadratic polynomial be $\alpha ,\beta ,\gamma ,\delta $
Case 1: Sum of two roots is equal to the sum of other two roots,
$\therefore \alpha + \delta = \beta + \gamma {\text{ }} \ldots \left( 2 \right)$
General quadratic equation: $a{x^4} + b{x^3} + c{x^2} + dx + e = 0{\text{ }} \ldots \left( 3 \right)$
Comparing equation (1) and (3), we get:
$a = 1,{\text{ }}b = - p,{\text{ }}c = q,{\text{ }}d = - r,{\text{ }}e = s{\text{ }} \ldots \left( 4 \right)$
As we know, the sum of roots of a quadratic equation is $ - \dfrac{b}{a}$ .
$
\Rightarrow \alpha + \beta + \gamma + \delta = - \dfrac{b}{a} \\
\Rightarrow \alpha + \beta + \gamma + \delta = - \left( {\dfrac{{ - p}}{1}} \right){\text{ }}\left( {{\text{using }}\left( 4 \right)} \right) \\
\Rightarrow \alpha + \beta + \gamma + \delta = p \\
\Rightarrow \alpha + \beta = \gamma + \delta = \dfrac{p}{2}{\text{ }}\left( {{\text{using }}\left( 2 \right)} \right) \ldots \ldots \left( 5 \right) \\
$
Also, the sum of products of roots of a quadratic equation is $\dfrac{c}{a}$ .
$
\Rightarrow \alpha \beta + \alpha \gamma + \alpha \delta + \beta \gamma + \beta \delta + \gamma \delta = \dfrac{c}{a} \\
\Rightarrow \left( {\alpha + \delta } \right)\left( {\beta + \gamma } \right) + \alpha \delta + \beta \gamma = q{\text{ }}\left( {{\text{using }}\left( 4 \right)} \right) \\
$
Now, substituting values of $\left( {\alpha + \delta } \right)$and $\left( {\beta + \gamma } \right)$from equation (5), we get:
$
\Rightarrow \left( {\dfrac{p}{2}} \right)\left( {\dfrac{p}{2}} \right) + \alpha \delta + \beta \gamma = q{\text{ }}\left( {{\text{using }}\left( 5 \right)} \right) \\
\Rightarrow \alpha \delta + \beta \gamma = q - \dfrac{{{p^2}}}{4}{\text{ }} \ldots \left( 6 \right) \\
$
Now, the sum of products of roots of a quadratic equation is $r$.
$
\Rightarrow \alpha \beta \gamma + \alpha \beta \delta + \alpha \gamma \delta + \beta \gamma \delta = r \\
\Rightarrow \beta \gamma \left( {\alpha + \delta } \right) + \alpha \delta \left( {\beta + \gamma } \right) = r \\
$
Now, substituting values of $\left( {\alpha + \delta } \right)$and $\left( {\beta + \gamma } \right)$from equation (5), we get:
$ \Rightarrow \beta \gamma \left( {\dfrac{p}{2}} \right) + \alpha \delta \left( {\dfrac{p}{2}} \right) = r{\text{ }}\left( {{\text{using }}\left( 5 \right)} \right)$
Taking $\dfrac{p}{2}$ common, we get:
$ \Rightarrow \dfrac{p}{2}\left( {\beta \gamma + \alpha \delta } \right) = r{\text{ }} \ldots \left( 7 \right)$
Putting value of $\left( {\beta \gamma + \alpha \delta } \right)$from equation (6), we get:
$
\Rightarrow \dfrac{p}{2}\left( {q - \dfrac{{{p^2}}}{4}} \right) = r{\text{ }}\left( {{\text{using }}\left( 6 \right)} \right) \\
\Rightarrow {p^3} - 4pq + 8r = 0 \\
$
Case 2: Product of two roots is equal to the product of other two roots, therefore $\alpha \delta = \beta \gamma {\text{ }} \ldots \left( 8 \right)$
We know: $\alpha \beta \gamma + \alpha \beta \delta + \alpha \gamma \delta + \beta \gamma \delta = r$
$
\Rightarrow \beta \gamma \left( {\alpha + \delta } \right) + \alpha \delta \left( {\beta + \gamma } \right) = r \\
\Rightarrow \alpha \delta \left( {\alpha + \beta + \gamma + \delta } \right) = r \\
\Rightarrow \alpha \delta = \beta \gamma = \dfrac{r}{p}{\text{ }}\left( {\because {\text{sum of roots is p}}} \right) \\
$
Now, $\alpha \beta \gamma \delta = \left( {\alpha \delta } \right)\left( {\beta \gamma } \right)$
Putting values of $\alpha \delta $and $\beta \gamma $, we get:
$\alpha \beta \gamma \delta = \left( {\dfrac{r}{p}} \right)\left( {\dfrac{r}{p}} \right) = s$
$
\therefore \dfrac{{{r^2}}}{{{p^2}}} = s \\
{r^2} = {p^2}s \\
$
Hence Proved.
Note: Whenever there are polynomial equations and you have to prove something related to their roots, always try to use the polynomial identities like sum of roots, product of roots etc. and try to obtain relations between them.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE