
In the equation ${x^4} - p{x^3} + q{x^2} - rx + s = 0$, prove that if the sum of two of the roots is equal to the sum of the other two ${p^3} - 4pq + 8r = 0$; and that if the product of the two of the roots is equal to the product of the other two ${r^2} = {p^2}s$.
Answer
610.8k+ views
Hint: Use identities of the Quadratic polynomial and simply solve them.
Given: ${x^4} - p{x^3} + q{x^2} - rx + s = 0{\text{ }} \ldots \left( 1 \right)$
Let the four roots of the given quadratic polynomial be $\alpha ,\beta ,\gamma ,\delta $
Case 1: Sum of two roots is equal to the sum of other two roots,
$\therefore \alpha + \delta = \beta + \gamma {\text{ }} \ldots \left( 2 \right)$
General quadratic equation: $a{x^4} + b{x^3} + c{x^2} + dx + e = 0{\text{ }} \ldots \left( 3 \right)$
Comparing equation (1) and (3), we get:
$a = 1,{\text{ }}b = - p,{\text{ }}c = q,{\text{ }}d = - r,{\text{ }}e = s{\text{ }} \ldots \left( 4 \right)$
As we know, the sum of roots of a quadratic equation is $ - \dfrac{b}{a}$ .
$
\Rightarrow \alpha + \beta + \gamma + \delta = - \dfrac{b}{a} \\
\Rightarrow \alpha + \beta + \gamma + \delta = - \left( {\dfrac{{ - p}}{1}} \right){\text{ }}\left( {{\text{using }}\left( 4 \right)} \right) \\
\Rightarrow \alpha + \beta + \gamma + \delta = p \\
\Rightarrow \alpha + \beta = \gamma + \delta = \dfrac{p}{2}{\text{ }}\left( {{\text{using }}\left( 2 \right)} \right) \ldots \ldots \left( 5 \right) \\
$
Also, the sum of products of roots of a quadratic equation is $\dfrac{c}{a}$ .
$
\Rightarrow \alpha \beta + \alpha \gamma + \alpha \delta + \beta \gamma + \beta \delta + \gamma \delta = \dfrac{c}{a} \\
\Rightarrow \left( {\alpha + \delta } \right)\left( {\beta + \gamma } \right) + \alpha \delta + \beta \gamma = q{\text{ }}\left( {{\text{using }}\left( 4 \right)} \right) \\
$
Now, substituting values of $\left( {\alpha + \delta } \right)$and $\left( {\beta + \gamma } \right)$from equation (5), we get:
$
\Rightarrow \left( {\dfrac{p}{2}} \right)\left( {\dfrac{p}{2}} \right) + \alpha \delta + \beta \gamma = q{\text{ }}\left( {{\text{using }}\left( 5 \right)} \right) \\
\Rightarrow \alpha \delta + \beta \gamma = q - \dfrac{{{p^2}}}{4}{\text{ }} \ldots \left( 6 \right) \\
$
Now, the sum of products of roots of a quadratic equation is $r$.
$
\Rightarrow \alpha \beta \gamma + \alpha \beta \delta + \alpha \gamma \delta + \beta \gamma \delta = r \\
\Rightarrow \beta \gamma \left( {\alpha + \delta } \right) + \alpha \delta \left( {\beta + \gamma } \right) = r \\
$
Now, substituting values of $\left( {\alpha + \delta } \right)$and $\left( {\beta + \gamma } \right)$from equation (5), we get:
$ \Rightarrow \beta \gamma \left( {\dfrac{p}{2}} \right) + \alpha \delta \left( {\dfrac{p}{2}} \right) = r{\text{ }}\left( {{\text{using }}\left( 5 \right)} \right)$
Taking $\dfrac{p}{2}$ common, we get:
$ \Rightarrow \dfrac{p}{2}\left( {\beta \gamma + \alpha \delta } \right) = r{\text{ }} \ldots \left( 7 \right)$
Putting value of $\left( {\beta \gamma + \alpha \delta } \right)$from equation (6), we get:
$
\Rightarrow \dfrac{p}{2}\left( {q - \dfrac{{{p^2}}}{4}} \right) = r{\text{ }}\left( {{\text{using }}\left( 6 \right)} \right) \\
\Rightarrow {p^3} - 4pq + 8r = 0 \\
$
Case 2: Product of two roots is equal to the product of other two roots, therefore $\alpha \delta = \beta \gamma {\text{ }} \ldots \left( 8 \right)$
We know: $\alpha \beta \gamma + \alpha \beta \delta + \alpha \gamma \delta + \beta \gamma \delta = r$
$
\Rightarrow \beta \gamma \left( {\alpha + \delta } \right) + \alpha \delta \left( {\beta + \gamma } \right) = r \\
\Rightarrow \alpha \delta \left( {\alpha + \beta + \gamma + \delta } \right) = r \\
\Rightarrow \alpha \delta = \beta \gamma = \dfrac{r}{p}{\text{ }}\left( {\because {\text{sum of roots is p}}} \right) \\
$
Now, $\alpha \beta \gamma \delta = \left( {\alpha \delta } \right)\left( {\beta \gamma } \right)$
Putting values of $\alpha \delta $and $\beta \gamma $, we get:
$\alpha \beta \gamma \delta = \left( {\dfrac{r}{p}} \right)\left( {\dfrac{r}{p}} \right) = s$
$
\therefore \dfrac{{{r^2}}}{{{p^2}}} = s \\
{r^2} = {p^2}s \\
$
Hence Proved.
Note: Whenever there are polynomial equations and you have to prove something related to their roots, always try to use the polynomial identities like sum of roots, product of roots etc. and try to obtain relations between them.
Given: ${x^4} - p{x^3} + q{x^2} - rx + s = 0{\text{ }} \ldots \left( 1 \right)$
Let the four roots of the given quadratic polynomial be $\alpha ,\beta ,\gamma ,\delta $
Case 1: Sum of two roots is equal to the sum of other two roots,
$\therefore \alpha + \delta = \beta + \gamma {\text{ }} \ldots \left( 2 \right)$
General quadratic equation: $a{x^4} + b{x^3} + c{x^2} + dx + e = 0{\text{ }} \ldots \left( 3 \right)$
Comparing equation (1) and (3), we get:
$a = 1,{\text{ }}b = - p,{\text{ }}c = q,{\text{ }}d = - r,{\text{ }}e = s{\text{ }} \ldots \left( 4 \right)$
As we know, the sum of roots of a quadratic equation is $ - \dfrac{b}{a}$ .
$
\Rightarrow \alpha + \beta + \gamma + \delta = - \dfrac{b}{a} \\
\Rightarrow \alpha + \beta + \gamma + \delta = - \left( {\dfrac{{ - p}}{1}} \right){\text{ }}\left( {{\text{using }}\left( 4 \right)} \right) \\
\Rightarrow \alpha + \beta + \gamma + \delta = p \\
\Rightarrow \alpha + \beta = \gamma + \delta = \dfrac{p}{2}{\text{ }}\left( {{\text{using }}\left( 2 \right)} \right) \ldots \ldots \left( 5 \right) \\
$
Also, the sum of products of roots of a quadratic equation is $\dfrac{c}{a}$ .
$
\Rightarrow \alpha \beta + \alpha \gamma + \alpha \delta + \beta \gamma + \beta \delta + \gamma \delta = \dfrac{c}{a} \\
\Rightarrow \left( {\alpha + \delta } \right)\left( {\beta + \gamma } \right) + \alpha \delta + \beta \gamma = q{\text{ }}\left( {{\text{using }}\left( 4 \right)} \right) \\
$
Now, substituting values of $\left( {\alpha + \delta } \right)$and $\left( {\beta + \gamma } \right)$from equation (5), we get:
$
\Rightarrow \left( {\dfrac{p}{2}} \right)\left( {\dfrac{p}{2}} \right) + \alpha \delta + \beta \gamma = q{\text{ }}\left( {{\text{using }}\left( 5 \right)} \right) \\
\Rightarrow \alpha \delta + \beta \gamma = q - \dfrac{{{p^2}}}{4}{\text{ }} \ldots \left( 6 \right) \\
$
Now, the sum of products of roots of a quadratic equation is $r$.
$
\Rightarrow \alpha \beta \gamma + \alpha \beta \delta + \alpha \gamma \delta + \beta \gamma \delta = r \\
\Rightarrow \beta \gamma \left( {\alpha + \delta } \right) + \alpha \delta \left( {\beta + \gamma } \right) = r \\
$
Now, substituting values of $\left( {\alpha + \delta } \right)$and $\left( {\beta + \gamma } \right)$from equation (5), we get:
$ \Rightarrow \beta \gamma \left( {\dfrac{p}{2}} \right) + \alpha \delta \left( {\dfrac{p}{2}} \right) = r{\text{ }}\left( {{\text{using }}\left( 5 \right)} \right)$
Taking $\dfrac{p}{2}$ common, we get:
$ \Rightarrow \dfrac{p}{2}\left( {\beta \gamma + \alpha \delta } \right) = r{\text{ }} \ldots \left( 7 \right)$
Putting value of $\left( {\beta \gamma + \alpha \delta } \right)$from equation (6), we get:
$
\Rightarrow \dfrac{p}{2}\left( {q - \dfrac{{{p^2}}}{4}} \right) = r{\text{ }}\left( {{\text{using }}\left( 6 \right)} \right) \\
\Rightarrow {p^3} - 4pq + 8r = 0 \\
$
Case 2: Product of two roots is equal to the product of other two roots, therefore $\alpha \delta = \beta \gamma {\text{ }} \ldots \left( 8 \right)$
We know: $\alpha \beta \gamma + \alpha \beta \delta + \alpha \gamma \delta + \beta \gamma \delta = r$
$
\Rightarrow \beta \gamma \left( {\alpha + \delta } \right) + \alpha \delta \left( {\beta + \gamma } \right) = r \\
\Rightarrow \alpha \delta \left( {\alpha + \beta + \gamma + \delta } \right) = r \\
\Rightarrow \alpha \delta = \beta \gamma = \dfrac{r}{p}{\text{ }}\left( {\because {\text{sum of roots is p}}} \right) \\
$
Now, $\alpha \beta \gamma \delta = \left( {\alpha \delta } \right)\left( {\beta \gamma } \right)$
Putting values of $\alpha \delta $and $\beta \gamma $, we get:
$\alpha \beta \gamma \delta = \left( {\dfrac{r}{p}} \right)\left( {\dfrac{r}{p}} \right) = s$
$
\therefore \dfrac{{{r^2}}}{{{p^2}}} = s \\
{r^2} = {p^2}s \\
$
Hence Proved.
Note: Whenever there are polynomial equations and you have to prove something related to their roots, always try to use the polynomial identities like sum of roots, product of roots etc. and try to obtain relations between them.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

