
: In the diagram \[ABCD\] is a rectangle and point \[E\] lies on \[AB\]. Triangle \[DEC\] has \[\left| \!{\underline {
{DEC} }} \right. = {90^ \circ }\], \[DE = 3\] and \[EC = 4\]. The length of \[AD\] is
A.2.4
B.2.8
C.1.8
D.3.2
Answer
504.3k+ views
Hint: Here in this question, we have to find the length of the side AD in the given rectangular diagram AD, this can be solve by applying a Pythagoras theorem i.e., \[hy{p^2} = op{p^2} + ad{j^2}\] in triangles \[\Delta DEC\], \[\Delta EAD\], and \[\Delta EBC\] then further simplify by using a basic arithmetic operation we get the required length of the side AD.
Complete step-by-step answer:
Consider the given diagram \[ABCD\] is a rectangular and point E lies on the side AB, and the given line DE and EC which have a length 3 and 4 respectively and the point E makes angle \[{90^ \circ }\].
In rectangle \[ABCD\], we found three triangles i.e., \[\Delta DEC\], \[\Delta EAD\] and \[\Delta EBC\]. E be the common point in all three triangles.
Now, consider the triangle \[\Delta DEC\] is a right-angled triangle.
In \[\Delta DEC\], \[\left| \!{\underline {
E }} \right. = {90^ \circ }\]
Then by the Pythagoras theorem
\[ \Rightarrow {\left( {DC} \right)^2} = {\left( {DE} \right)^2} + {\left( {EC} \right)^2}\]
Given, \[DE = 3\] and \[EC = 4\], on substituting we have
\[ \Rightarrow {\left( {DC} \right)^2} = {\left( 3 \right)^2} + {\left( 4 \right)^2}\]
\[ \Rightarrow {\left( {DC} \right)^2} = 9 + 16\]
\[ \Rightarrow {\left( {DC} \right)^2} = 25\]
Taking square root on both side, then
\[ \Rightarrow DC = \pm \sqrt {25} \]
\[ \Rightarrow DC = \pm 5\]
When, measuring the length of any shape we only consider the positive value
\[\therefore DC = 5\]
Now, consider triangle \[\Delta EAD\] is a right-angle triangle
In, \[\Delta EAD\], \[\left| \!{\underline {
A }} \right. = {90^ \circ }\]and let take \[AE = x\]
Then by the Pythagoras theorem
\[ \Rightarrow {\left( {DE} \right)^2} = {\left( {AD} \right)^2} + {\left( {AE} \right)^2}\]
\[ \Rightarrow {\left( 3 \right)^2} = {\left( {AD} \right)^2} + {\left( x \right)^2}\]
\[ \Rightarrow 9 = {\left( {AD} \right)^2} + {x^2}\]
On rearranging, we have
\[ \Rightarrow {\left( {AD} \right)^2} = 9 - {x^2}\]-------(1)
Now, consider triangle \[\Delta EBC\] is a right-angle triangle
In, \[\Delta EBC\], \[\left| \!{\underline {
B }} \right. = {90^ \circ }\] and
Let, \[EB = AB - AE\]
But \[AB = DC = 5\], then
\[ \Rightarrow EB = 5 - x\]
Then by the Pythagoras theorem
\[ \Rightarrow {\left( {EC} \right)^2} = {\left( {BC} \right)^2} + {\left( {EB} \right)^2}\]
But \[BC = AD\], then
\[ \Rightarrow {\left( 4 \right)^2} = {\left( {AD} \right)^2} + {\left( {5 - x} \right)^2}\]
\[ \Rightarrow 16 = {\left( {AD} \right)^2} + {\left( {5 - x} \right)^2}\]
On applying a algebraic identity: \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\], then
\[ \Rightarrow 16 = {\left( {AD} \right)^2} + {5^2} + {x^2} - 10x\]
\[ \Rightarrow 16 = {\left( {AD} \right)^2} + 25 + {x^2} - 10x\]
On rearranging, we have
\[ \Rightarrow {\left( {AD} \right)^2} = 16 - 25 - {x^2} + 10x\]
\[ \Rightarrow {\left( {AD} \right)^2} = 10x - 9 - {x^2}\] ------(2)
From equation (1) and (2), we have
\[ \Rightarrow 9 - {x^2} = 10x - 9 - {x^2}\]
Take variable \[x\] terms in to the LHS, then
\[ \Rightarrow {x^2} - {x^2} - 10x = - 9 - 9\]
On simplification, we have
\[ \Rightarrow - 10x = - 18\]
Divide both side by -10, then we get
\[ \Rightarrow x = \dfrac{{ - 18}}{{ - 10}}\]
\[ \Rightarrow x = 1.8\]
Substitute \[x\] value in equation (1), then
\[ \Rightarrow {\left( {AD} \right)^2} = 9 - {\left( {1.8} \right)^2}\]
\[ \Rightarrow {\left( {AD} \right)^2} = 9 - 3.24\]
\[ \Rightarrow {\left( {AD} \right)^2} = 5.76\]
Take square root on both side, we have
\[ \Rightarrow AD = \pm \sqrt {5.76} \]
\[ \Rightarrow AD = \pm 2.4\]
\[\therefore AD = 2.4\]
Hence, the length of the side \[AD = 2.4\].
Therefore, Option (A) is correct.
So, the correct answer is “Option A”.
Note: To solve rectangular based problems, remember the properties of triangle i.e., the parallel sides are equal and when triangle is right angle it‘s obey the Pythagoras theorem which stated as “In a right-angled triangle, the square of the hypotenuse side is equal to the sum of squares of the other two sides” i.e., \[hy{p^2} = op{p^2} + ad{j^2}\], and main thing is measurement of length of any shape should be in positive.
Complete step-by-step answer:
Consider the given diagram \[ABCD\] is a rectangular and point E lies on the side AB, and the given line DE and EC which have a length 3 and 4 respectively and the point E makes angle \[{90^ \circ }\].
In rectangle \[ABCD\], we found three triangles i.e., \[\Delta DEC\], \[\Delta EAD\] and \[\Delta EBC\]. E be the common point in all three triangles.
Now, consider the triangle \[\Delta DEC\] is a right-angled triangle.
In \[\Delta DEC\], \[\left| \!{\underline {
E }} \right. = {90^ \circ }\]
Then by the Pythagoras theorem
\[ \Rightarrow {\left( {DC} \right)^2} = {\left( {DE} \right)^2} + {\left( {EC} \right)^2}\]
Given, \[DE = 3\] and \[EC = 4\], on substituting we have
\[ \Rightarrow {\left( {DC} \right)^2} = {\left( 3 \right)^2} + {\left( 4 \right)^2}\]
\[ \Rightarrow {\left( {DC} \right)^2} = 9 + 16\]
\[ \Rightarrow {\left( {DC} \right)^2} = 25\]
Taking square root on both side, then
\[ \Rightarrow DC = \pm \sqrt {25} \]
\[ \Rightarrow DC = \pm 5\]
When, measuring the length of any shape we only consider the positive value
\[\therefore DC = 5\]
Now, consider triangle \[\Delta EAD\] is a right-angle triangle
In, \[\Delta EAD\], \[\left| \!{\underline {
A }} \right. = {90^ \circ }\]and let take \[AE = x\]
Then by the Pythagoras theorem
\[ \Rightarrow {\left( {DE} \right)^2} = {\left( {AD} \right)^2} + {\left( {AE} \right)^2}\]
\[ \Rightarrow {\left( 3 \right)^2} = {\left( {AD} \right)^2} + {\left( x \right)^2}\]
\[ \Rightarrow 9 = {\left( {AD} \right)^2} + {x^2}\]
On rearranging, we have
\[ \Rightarrow {\left( {AD} \right)^2} = 9 - {x^2}\]-------(1)
Now, consider triangle \[\Delta EBC\] is a right-angle triangle
In, \[\Delta EBC\], \[\left| \!{\underline {
B }} \right. = {90^ \circ }\] and
Let, \[EB = AB - AE\]
But \[AB = DC = 5\], then
\[ \Rightarrow EB = 5 - x\]
Then by the Pythagoras theorem
\[ \Rightarrow {\left( {EC} \right)^2} = {\left( {BC} \right)^2} + {\left( {EB} \right)^2}\]
But \[BC = AD\], then
\[ \Rightarrow {\left( 4 \right)^2} = {\left( {AD} \right)^2} + {\left( {5 - x} \right)^2}\]
\[ \Rightarrow 16 = {\left( {AD} \right)^2} + {\left( {5 - x} \right)^2}\]
On applying a algebraic identity: \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\], then
\[ \Rightarrow 16 = {\left( {AD} \right)^2} + {5^2} + {x^2} - 10x\]
\[ \Rightarrow 16 = {\left( {AD} \right)^2} + 25 + {x^2} - 10x\]
On rearranging, we have
\[ \Rightarrow {\left( {AD} \right)^2} = 16 - 25 - {x^2} + 10x\]
\[ \Rightarrow {\left( {AD} \right)^2} = 10x - 9 - {x^2}\] ------(2)
From equation (1) and (2), we have
\[ \Rightarrow 9 - {x^2} = 10x - 9 - {x^2}\]
Take variable \[x\] terms in to the LHS, then
\[ \Rightarrow {x^2} - {x^2} - 10x = - 9 - 9\]
On simplification, we have
\[ \Rightarrow - 10x = - 18\]
Divide both side by -10, then we get
\[ \Rightarrow x = \dfrac{{ - 18}}{{ - 10}}\]
\[ \Rightarrow x = 1.8\]
Substitute \[x\] value in equation (1), then
\[ \Rightarrow {\left( {AD} \right)^2} = 9 - {\left( {1.8} \right)^2}\]
\[ \Rightarrow {\left( {AD} \right)^2} = 9 - 3.24\]
\[ \Rightarrow {\left( {AD} \right)^2} = 5.76\]
Take square root on both side, we have
\[ \Rightarrow AD = \pm \sqrt {5.76} \]
\[ \Rightarrow AD = \pm 2.4\]
\[\therefore AD = 2.4\]
Hence, the length of the side \[AD = 2.4\].
Therefore, Option (A) is correct.
So, the correct answer is “Option A”.
Note: To solve rectangular based problems, remember the properties of triangle i.e., the parallel sides are equal and when triangle is right angle it‘s obey the Pythagoras theorem which stated as “In a right-angled triangle, the square of the hypotenuse side is equal to the sum of squares of the other two sides” i.e., \[hy{p^2} = op{p^2} + ad{j^2}\], and main thing is measurement of length of any shape should be in positive.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the full form of pH?

