Answer
Verified
448.8k+ views
Hint: PQRS is a quadrilateral. The property of quadrilateral says that the sum of any two angles is 180 . All the internal angles of a quadrilateral sum up to ${360^ \circ }$. In this question first we have to find the value of angle Q then we simply can't get the ratio of angle R and angle Q.
Complete step-by-step answer:
We known that \[\angle R + \angle Q = {180^ \circ }\]
And we have the value of angle R is given $\angle R = {60^ \circ }$
Simply put the value of angle R
= ${60^ \circ } + \angle Q = {180^ \circ }$
= $\angle Q = {180^ \circ } - {60^ \circ }$
= $\angle Q = {120^ \circ }$
Now we have the value of angle Q
We can easily find the ratio of angle R and angle Q
For finding the ratio just do $\dfrac{{\angle R}}{{\angle Q}}$
= $\dfrac{{\angle R}}{{\angle Q}}$$ = \dfrac{{60}}{{120}}$
By canceling the denominator and numerator we get
= $\dfrac{{\angle R}}{{\angle Q}}$$ = \dfrac{1}{2}$
Here we get ratio of angle R and angle Q is 1:2
Note: Quadrilateral just means “four side”. A quadrilateral has four sides, it has two dimensional, closed and has straight sides. All the internal angles of a quadrilateral sum up to ${360^ \circ }$. And the most important point is opposite angles are equal and opposite sides are equal and parallel. In quadrilateral sum of any two adjuacent angles is $180$. In quadrilateral if one angle is the right angle then all the angles are the right angle and the diagonals of a parallelogram bisect each other. According to the angle sum property of a quadrilateral, the sum of all the four interior angles is equal to ${360^ \circ }$.
Complete step-by-step answer:
We known that \[\angle R + \angle Q = {180^ \circ }\]
And we have the value of angle R is given $\angle R = {60^ \circ }$
Simply put the value of angle R
= ${60^ \circ } + \angle Q = {180^ \circ }$
= $\angle Q = {180^ \circ } - {60^ \circ }$
= $\angle Q = {120^ \circ }$
Now we have the value of angle Q
We can easily find the ratio of angle R and angle Q
For finding the ratio just do $\dfrac{{\angle R}}{{\angle Q}}$
= $\dfrac{{\angle R}}{{\angle Q}}$$ = \dfrac{{60}}{{120}}$
By canceling the denominator and numerator we get
= $\dfrac{{\angle R}}{{\angle Q}}$$ = \dfrac{1}{2}$
Here we get ratio of angle R and angle Q is 1:2
Note: Quadrilateral just means “four side”. A quadrilateral has four sides, it has two dimensional, closed and has straight sides. All the internal angles of a quadrilateral sum up to ${360^ \circ }$. And the most important point is opposite angles are equal and opposite sides are equal and parallel. In quadrilateral sum of any two adjuacent angles is $180$. In quadrilateral if one angle is the right angle then all the angles are the right angle and the diagonals of a parallelogram bisect each other. According to the angle sum property of a quadrilateral, the sum of all the four interior angles is equal to ${360^ \circ }$.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Choose the antonym of the word given below Furious class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE