Answer
Verified
438k+ views
Hint: We will find the value of $ \left| H \right| $ and power up the equation with $ 70 $ to get the value of $ {{H}^{70}} $ . After getting the value of $ {{H}^{70}} $ as $ {{\omega }^{140}} $ we use the formula $ {{\omega }^{3n}}=1 $ from the given data that $ \omega $ is the cube root of unity i.e. when we raised to the power f $ 3 $ we get the value as $ 1 $ . Mathematically $ {{\omega }^{3}}=1 $ for our convenience we can write
$ \begin{align}
& {{\left( {{\omega }^{3}} \right)}^{n}}={{1}^{n}} \\
& {{\omega }^{3n}}=1
\end{align} $
by using the property $ {{1}^{n}}=1 $ and simplify the equation to get the result.
Complete step by step answer:
Given that, $ H=\left[ \begin{matrix}
\omega & 0 \\
0 & \omega \\
\end{matrix} \right], $ $ \omega \ne 1 $
$\Rightarrow$ The value of $ \left| H \right| $ is
$ \begin{align}
& \left| H \right|=\left| \begin{matrix}
\omega & 0 \\
0 & \omega \\
\end{matrix} \right| \\
& ={{\omega }^{2}}
\end{align} $
$\Rightarrow$ Add power of $ 70 $ to the above equation, then
$ \begin{align}
& {{\left| H \right|}^{70}}={{\left( {{\omega }^{2}} \right)}^{70}} \\
& {{H}^{70}}={{\omega }^{140}}....\left( \text{i} \right)
\end{align} $
$\Rightarrow$ Given that, $ \omega $ is the cube root of the unity i.e.
$ \begin{align}
& \omega =\sqrt[3]{1} \\
& {{\omega }^{3n}}=1 \\
\end{align} $
$\Rightarrow$ Now from the equation $ \left( \text{i} \right) $
$ {{H}^{70}}={{\omega }^{140}} $
$\Rightarrow$ We are going to write $ 140 $ as multiple of $ 3 $ , then
$ {{H}^{70}}={{\omega }^{3\times 46+2}} $
Using the formula $ {{a}^{b+c}}={{a}^{b}}.{{a}^{c}} $ in the above equation then we have
$ {{H}^{70}}={{\omega }^{3\times 46}}.{{\omega }^{2}} $
$\Rightarrow$ We have $ {{\omega }^{3n}}=1 $ , so we can write $ {{\omega }^{3\times 46}}=1 $ in the above equation, then
$ \begin{align}
& {{H}^{70}}=1\left( {{\omega }^{2}} \right) \\
& {{H}^{70}}={{\omega }^{2}} \\
\end{align} $
$\Rightarrow$ But we have $ {{\omega }^{2}}=H $ so
$ {{H}^{70}}=H $
Note:
We can solve the problem by finding the values of $ {{H}^{2}},{{H}^{3}},{{H}^{4}},{{H}^{5}},{{H}^{6}} $
$ \begin{align}
& {{H}^{2}}=\left[ \begin{matrix}
\omega & 0 \\
0 & \omega \\
\end{matrix} \right]\left[ \begin{matrix}
\omega & 0 \\
0 & \omega \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
\omega \left( \omega \right) & 0 \\
0 & \omega \left( \omega \right) \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
{{\omega }^{2}} & 0 \\
0 & {{\omega }^{2}} \\
\end{matrix} \right]
\end{align} $
$ \begin{align}
& {{H}^{3}}={{H}^{2}}H \\
& =\left[ \begin{matrix}
{{\omega }^{2}} & 0 \\
0 & {{\omega }^{2}} \\
\end{matrix} \right]\left[ \begin{matrix}
\omega & 0 \\
0 & \omega \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
{{\omega }^{2}}\left( \omega \right) & 0 \\
0 & {{\omega }^{2}}\left( \omega \right) \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right] \\
& =I
\end{align} $
$ \begin{align}
& {{H}^{4}}={{H}^{3}}.H \\
& =I.H \\
& =H
\end{align} $
$ \begin{align}
& {{H}^{5}}={{H}^{4}}.H \\
& =H.H \\
& ={{H}^{2}}
\end{align} $
$ \begin{align}
& {{H}^{6}}={{H}^{5}}.H \\
& ={{H}^{2}}.H \\
& ={{H}^{3}} \\
& =I
\end{align} $
From the above sequence we can say that
$ \begin{align}
& {{H}^{69}}={{\left( {{H}^{3}} \right)}^{13}} \\
& ={{I}^{13}} \\
& =I
\end{align} $
Now the value of $ {{H}^{70}} $ is
$ \begin{align}
& {{H}^{70}}={{H}^{69}}.H \\
& =I.H \\
& =H
\end{align} $
Don’t use the value of $ \omega $ as $ {{1}^{\dfrac{1}{3}}} $ in the equation $ {{H}^{70}}={{\omega }^{140}} $ as we can’t get the proper value of $ {{H}^{70}} $ . You only use the formula $ {{\omega }^{3n}}=1 $ and simplify $ {{\omega }^{140}} $ .
$ \begin{align}
& {{\left( {{\omega }^{3}} \right)}^{n}}={{1}^{n}} \\
& {{\omega }^{3n}}=1
\end{align} $
by using the property $ {{1}^{n}}=1 $ and simplify the equation to get the result.
Complete step by step answer:
Given that, $ H=\left[ \begin{matrix}
\omega & 0 \\
0 & \omega \\
\end{matrix} \right], $ $ \omega \ne 1 $
$\Rightarrow$ The value of $ \left| H \right| $ is
$ \begin{align}
& \left| H \right|=\left| \begin{matrix}
\omega & 0 \\
0 & \omega \\
\end{matrix} \right| \\
& ={{\omega }^{2}}
\end{align} $
$\Rightarrow$ Add power of $ 70 $ to the above equation, then
$ \begin{align}
& {{\left| H \right|}^{70}}={{\left( {{\omega }^{2}} \right)}^{70}} \\
& {{H}^{70}}={{\omega }^{140}}....\left( \text{i} \right)
\end{align} $
$\Rightarrow$ Given that, $ \omega $ is the cube root of the unity i.e.
$ \begin{align}
& \omega =\sqrt[3]{1} \\
& {{\omega }^{3n}}=1 \\
\end{align} $
$\Rightarrow$ Now from the equation $ \left( \text{i} \right) $
$ {{H}^{70}}={{\omega }^{140}} $
$\Rightarrow$ We are going to write $ 140 $ as multiple of $ 3 $ , then
$ {{H}^{70}}={{\omega }^{3\times 46+2}} $
Using the formula $ {{a}^{b+c}}={{a}^{b}}.{{a}^{c}} $ in the above equation then we have
$ {{H}^{70}}={{\omega }^{3\times 46}}.{{\omega }^{2}} $
$\Rightarrow$ We have $ {{\omega }^{3n}}=1 $ , so we can write $ {{\omega }^{3\times 46}}=1 $ in the above equation, then
$ \begin{align}
& {{H}^{70}}=1\left( {{\omega }^{2}} \right) \\
& {{H}^{70}}={{\omega }^{2}} \\
\end{align} $
$\Rightarrow$ But we have $ {{\omega }^{2}}=H $ so
$ {{H}^{70}}=H $
Note:
We can solve the problem by finding the values of $ {{H}^{2}},{{H}^{3}},{{H}^{4}},{{H}^{5}},{{H}^{6}} $
$ \begin{align}
& {{H}^{2}}=\left[ \begin{matrix}
\omega & 0 \\
0 & \omega \\
\end{matrix} \right]\left[ \begin{matrix}
\omega & 0 \\
0 & \omega \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
\omega \left( \omega \right) & 0 \\
0 & \omega \left( \omega \right) \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
{{\omega }^{2}} & 0 \\
0 & {{\omega }^{2}} \\
\end{matrix} \right]
\end{align} $
$ \begin{align}
& {{H}^{3}}={{H}^{2}}H \\
& =\left[ \begin{matrix}
{{\omega }^{2}} & 0 \\
0 & {{\omega }^{2}} \\
\end{matrix} \right]\left[ \begin{matrix}
\omega & 0 \\
0 & \omega \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
{{\omega }^{2}}\left( \omega \right) & 0 \\
0 & {{\omega }^{2}}\left( \omega \right) \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right] \\
& =I
\end{align} $
$ \begin{align}
& {{H}^{4}}={{H}^{3}}.H \\
& =I.H \\
& =H
\end{align} $
$ \begin{align}
& {{H}^{5}}={{H}^{4}}.H \\
& =H.H \\
& ={{H}^{2}}
\end{align} $
$ \begin{align}
& {{H}^{6}}={{H}^{5}}.H \\
& ={{H}^{2}}.H \\
& ={{H}^{3}} \\
& =I
\end{align} $
From the above sequence we can say that
$ \begin{align}
& {{H}^{69}}={{\left( {{H}^{3}} \right)}^{13}} \\
& ={{I}^{13}} \\
& =I
\end{align} $
Now the value of $ {{H}^{70}} $ is
$ \begin{align}
& {{H}^{70}}={{H}^{69}}.H \\
& =I.H \\
& =H
\end{align} $
Don’t use the value of $ \omega $ as $ {{1}^{\dfrac{1}{3}}} $ in the equation $ {{H}^{70}}={{\omega }^{140}} $ as we can’t get the proper value of $ {{H}^{70}} $ . You only use the formula $ {{\omega }^{3n}}=1 $ and simplify $ {{\omega }^{140}} $ .
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Choose the antonym of the word given below Furious class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE