In $ \omega \ne 1 $ is the complex cube root of unity and matrix $ H=\left[ \begin{matrix}
\omega & 0 \\
0 & \omega \\
\end{matrix} \right], $ then $ {{H}^{70}} $ is equal to
A) $ H $
B) $ 0 $
C) $ -H $
D) $ {{H}^{2}} $
Answer
Verified
466.2k+ views
Hint: We will find the value of $ \left| H \right| $ and power up the equation with $ 70 $ to get the value of $ {{H}^{70}} $ . After getting the value of $ {{H}^{70}} $ as $ {{\omega }^{140}} $ we use the formula $ {{\omega }^{3n}}=1 $ from the given data that $ \omega $ is the cube root of unity i.e. when we raised to the power f $ 3 $ we get the value as $ 1 $ . Mathematically $ {{\omega }^{3}}=1 $ for our convenience we can write
$ \begin{align}
& {{\left( {{\omega }^{3}} \right)}^{n}}={{1}^{n}} \\
& {{\omega }^{3n}}=1
\end{align} $
by using the property $ {{1}^{n}}=1 $ and simplify the equation to get the result.
Complete step by step answer:
Given that, $ H=\left[ \begin{matrix}
\omega & 0 \\
0 & \omega \\
\end{matrix} \right], $ $ \omega \ne 1 $
$\Rightarrow$ The value of $ \left| H \right| $ is
$ \begin{align}
& \left| H \right|=\left| \begin{matrix}
\omega & 0 \\
0 & \omega \\
\end{matrix} \right| \\
& ={{\omega }^{2}}
\end{align} $
$\Rightarrow$ Add power of $ 70 $ to the above equation, then
$ \begin{align}
& {{\left| H \right|}^{70}}={{\left( {{\omega }^{2}} \right)}^{70}} \\
& {{H}^{70}}={{\omega }^{140}}....\left( \text{i} \right)
\end{align} $
$\Rightarrow$ Given that, $ \omega $ is the cube root of the unity i.e.
$ \begin{align}
& \omega =\sqrt[3]{1} \\
& {{\omega }^{3n}}=1 \\
\end{align} $
$\Rightarrow$ Now from the equation $ \left( \text{i} \right) $
$ {{H}^{70}}={{\omega }^{140}} $
$\Rightarrow$ We are going to write $ 140 $ as multiple of $ 3 $ , then
$ {{H}^{70}}={{\omega }^{3\times 46+2}} $
Using the formula $ {{a}^{b+c}}={{a}^{b}}.{{a}^{c}} $ in the above equation then we have
$ {{H}^{70}}={{\omega }^{3\times 46}}.{{\omega }^{2}} $
$\Rightarrow$ We have $ {{\omega }^{3n}}=1 $ , so we can write $ {{\omega }^{3\times 46}}=1 $ in the above equation, then
$ \begin{align}
& {{H}^{70}}=1\left( {{\omega }^{2}} \right) \\
& {{H}^{70}}={{\omega }^{2}} \\
\end{align} $
$\Rightarrow$ But we have $ {{\omega }^{2}}=H $ so
$ {{H}^{70}}=H $
Note:
We can solve the problem by finding the values of $ {{H}^{2}},{{H}^{3}},{{H}^{4}},{{H}^{5}},{{H}^{6}} $
$ \begin{align}
& {{H}^{2}}=\left[ \begin{matrix}
\omega & 0 \\
0 & \omega \\
\end{matrix} \right]\left[ \begin{matrix}
\omega & 0 \\
0 & \omega \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
\omega \left( \omega \right) & 0 \\
0 & \omega \left( \omega \right) \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
{{\omega }^{2}} & 0 \\
0 & {{\omega }^{2}} \\
\end{matrix} \right]
\end{align} $
$ \begin{align}
& {{H}^{3}}={{H}^{2}}H \\
& =\left[ \begin{matrix}
{{\omega }^{2}} & 0 \\
0 & {{\omega }^{2}} \\
\end{matrix} \right]\left[ \begin{matrix}
\omega & 0 \\
0 & \omega \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
{{\omega }^{2}}\left( \omega \right) & 0 \\
0 & {{\omega }^{2}}\left( \omega \right) \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right] \\
& =I
\end{align} $
$ \begin{align}
& {{H}^{4}}={{H}^{3}}.H \\
& =I.H \\
& =H
\end{align} $
$ \begin{align}
& {{H}^{5}}={{H}^{4}}.H \\
& =H.H \\
& ={{H}^{2}}
\end{align} $
$ \begin{align}
& {{H}^{6}}={{H}^{5}}.H \\
& ={{H}^{2}}.H \\
& ={{H}^{3}} \\
& =I
\end{align} $
From the above sequence we can say that
$ \begin{align}
& {{H}^{69}}={{\left( {{H}^{3}} \right)}^{13}} \\
& ={{I}^{13}} \\
& =I
\end{align} $
Now the value of $ {{H}^{70}} $ is
$ \begin{align}
& {{H}^{70}}={{H}^{69}}.H \\
& =I.H \\
& =H
\end{align} $
Don’t use the value of $ \omega $ as $ {{1}^{\dfrac{1}{3}}} $ in the equation $ {{H}^{70}}={{\omega }^{140}} $ as we can’t get the proper value of $ {{H}^{70}} $ . You only use the formula $ {{\omega }^{3n}}=1 $ and simplify $ {{\omega }^{140}} $ .
$ \begin{align}
& {{\left( {{\omega }^{3}} \right)}^{n}}={{1}^{n}} \\
& {{\omega }^{3n}}=1
\end{align} $
by using the property $ {{1}^{n}}=1 $ and simplify the equation to get the result.
Complete step by step answer:
Given that, $ H=\left[ \begin{matrix}
\omega & 0 \\
0 & \omega \\
\end{matrix} \right], $ $ \omega \ne 1 $
$\Rightarrow$ The value of $ \left| H \right| $ is
$ \begin{align}
& \left| H \right|=\left| \begin{matrix}
\omega & 0 \\
0 & \omega \\
\end{matrix} \right| \\
& ={{\omega }^{2}}
\end{align} $
$\Rightarrow$ Add power of $ 70 $ to the above equation, then
$ \begin{align}
& {{\left| H \right|}^{70}}={{\left( {{\omega }^{2}} \right)}^{70}} \\
& {{H}^{70}}={{\omega }^{140}}....\left( \text{i} \right)
\end{align} $
$\Rightarrow$ Given that, $ \omega $ is the cube root of the unity i.e.
$ \begin{align}
& \omega =\sqrt[3]{1} \\
& {{\omega }^{3n}}=1 \\
\end{align} $
$\Rightarrow$ Now from the equation $ \left( \text{i} \right) $
$ {{H}^{70}}={{\omega }^{140}} $
$\Rightarrow$ We are going to write $ 140 $ as multiple of $ 3 $ , then
$ {{H}^{70}}={{\omega }^{3\times 46+2}} $
Using the formula $ {{a}^{b+c}}={{a}^{b}}.{{a}^{c}} $ in the above equation then we have
$ {{H}^{70}}={{\omega }^{3\times 46}}.{{\omega }^{2}} $
$\Rightarrow$ We have $ {{\omega }^{3n}}=1 $ , so we can write $ {{\omega }^{3\times 46}}=1 $ in the above equation, then
$ \begin{align}
& {{H}^{70}}=1\left( {{\omega }^{2}} \right) \\
& {{H}^{70}}={{\omega }^{2}} \\
\end{align} $
$\Rightarrow$ But we have $ {{\omega }^{2}}=H $ so
$ {{H}^{70}}=H $
Note:
We can solve the problem by finding the values of $ {{H}^{2}},{{H}^{3}},{{H}^{4}},{{H}^{5}},{{H}^{6}} $
$ \begin{align}
& {{H}^{2}}=\left[ \begin{matrix}
\omega & 0 \\
0 & \omega \\
\end{matrix} \right]\left[ \begin{matrix}
\omega & 0 \\
0 & \omega \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
\omega \left( \omega \right) & 0 \\
0 & \omega \left( \omega \right) \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
{{\omega }^{2}} & 0 \\
0 & {{\omega }^{2}} \\
\end{matrix} \right]
\end{align} $
$ \begin{align}
& {{H}^{3}}={{H}^{2}}H \\
& =\left[ \begin{matrix}
{{\omega }^{2}} & 0 \\
0 & {{\omega }^{2}} \\
\end{matrix} \right]\left[ \begin{matrix}
\omega & 0 \\
0 & \omega \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
{{\omega }^{2}}\left( \omega \right) & 0 \\
0 & {{\omega }^{2}}\left( \omega \right) \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right] \\
& =I
\end{align} $
$ \begin{align}
& {{H}^{4}}={{H}^{3}}.H \\
& =I.H \\
& =H
\end{align} $
$ \begin{align}
& {{H}^{5}}={{H}^{4}}.H \\
& =H.H \\
& ={{H}^{2}}
\end{align} $
$ \begin{align}
& {{H}^{6}}={{H}^{5}}.H \\
& ={{H}^{2}}.H \\
& ={{H}^{3}} \\
& =I
\end{align} $
From the above sequence we can say that
$ \begin{align}
& {{H}^{69}}={{\left( {{H}^{3}} \right)}^{13}} \\
& ={{I}^{13}} \\
& =I
\end{align} $
Now the value of $ {{H}^{70}} $ is
$ \begin{align}
& {{H}^{70}}={{H}^{69}}.H \\
& =I.H \\
& =H
\end{align} $
Don’t use the value of $ \omega $ as $ {{1}^{\dfrac{1}{3}}} $ in the equation $ {{H}^{70}}={{\omega }^{140}} $ as we can’t get the proper value of $ {{H}^{70}} $ . You only use the formula $ {{\omega }^{3n}}=1 $ and simplify $ {{\omega }^{140}} $ .
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success
Master Class 10 Computer Science: Engaging Questions & Answers for Success
Master Class 10 Science: Engaging Questions & Answers for Success
Master Class 10 Social Science: Engaging Questions & Answers for Success
Master Class 10 Maths: Engaging Questions & Answers for Success
Master Class 10 English: Engaging Questions & Answers for Success
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
The capital of British India was transferred from Calcutta class 10 social science CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE