Answer
Verified
493.5k+ views
Hint: In this question we need to find the number of ways in which the given number can be resolved into two factors. So, firstly we would be doing prime factorization of the given number and then use the formula for the same to resolve it into two factors. This would help us find the answer.
Complete step-by-step answer:
We have been given the number 7056. Now, if we do the prime factorization of the number we get,
$7056 = {2^4} \times {3^2} \times {7^2}$
So, the given number is of form ${a^p}{b^q}{c^r}.....$where a, b, c…. are prime numbers and p, q, r…. are all even numbers.
So, we can resolve the number into two factors in $\dfrac{1}{2}\left[ {\left( {p + 1} \right)\left( {q + 1} \right)\left( {r + 1} \right)....... + 1} \right]$ ways.
So, the number of ways in which the given number can be resolved into two factors is $\dfrac{1}{2}\left[ {\left( {4 + 1} \right)\left( {2 + 1} \right)\left( {2 + 1} \right) + 1} \right]$
$ = \dfrac{1}{2}\left[ {5 \times 3 \times 3 + 1} \right]$
$ = \dfrac{{46}}{2}$
$ = 23$
Hence 7056 can be resolved into two factors in 23 ways.
Note: Whenever we face such types of problems the key point to remember is that we need to have a good grasp over permutation and combinations. In these questions we should always find the prime factorization of the number and then use the formulas like given above. This helps in getting us the required condition and gets us on the right track to reach the answer.
Complete step-by-step answer:
We have been given the number 7056. Now, if we do the prime factorization of the number we get,
$7056 = {2^4} \times {3^2} \times {7^2}$
So, the given number is of form ${a^p}{b^q}{c^r}.....$where a, b, c…. are prime numbers and p, q, r…. are all even numbers.
So, we can resolve the number into two factors in $\dfrac{1}{2}\left[ {\left( {p + 1} \right)\left( {q + 1} \right)\left( {r + 1} \right)....... + 1} \right]$ ways.
So, the number of ways in which the given number can be resolved into two factors is $\dfrac{1}{2}\left[ {\left( {4 + 1} \right)\left( {2 + 1} \right)\left( {2 + 1} \right) + 1} \right]$
$ = \dfrac{1}{2}\left[ {5 \times 3 \times 3 + 1} \right]$
$ = \dfrac{{46}}{2}$
$ = 23$
Hence 7056 can be resolved into two factors in 23 ways.
Note: Whenever we face such types of problems the key point to remember is that we need to have a good grasp over permutation and combinations. In these questions we should always find the prime factorization of the number and then use the formulas like given above. This helps in getting us the required condition and gets us on the right track to reach the answer.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it