
In figure, PS is the bisector of $\angle QPR$ of $\vartriangle PQR.$ Prove that $\dfrac{{QS}}{{SR}} = \dfrac{{PQ}}{{PR}}$
Answer
621.6k+ views
Hint: We are going to use basic proportionality theorem, Alternate interior angles and corresponding angles to solve this problem.
In $\vartriangle QRT,RT\parallel SP$ [By construction]
And PS intersects QT and QR at two distinct points P and Q.
Therefore, QT and QR will be divided in the same ratio.
$\dfrac{{QS}}{{SR}} = \dfrac{{PQ}}{{PT}}$ ..... (1) [Basic proportionality theorem]
Now $RS\parallel SP$ and PR is transversal.
Therefore, $\angle SPR = \angle PRT$.....(2) [Alternate interior angles]
And $\angle QPS = \angle PTR$..... (3) [Corresponding angles]
Also given that PS is the bisector of $\angle QPR.$
$ \Rightarrow \angle QPR = \angle SPR$
From equations (2) and (3) $\angle PTR = \angle PRT$
Therefore, PT = PR [Sides opposite to equal angles of a triangle are equal]
Putting PT= PR in equation (1)
$\dfrac{{QS}}{{SR}} = \dfrac{{PQ}}{{PR}}$
Hence proved.
Note: Basic proportionality theorem states that if a line is drawn parallel to one side of a triangle, intersecting the other two sides at distinct points, then the other two sides are divided in the same ratio.
In $\vartriangle QRT,RT\parallel SP$ [By construction]
And PS intersects QT and QR at two distinct points P and Q.
Therefore, QT and QR will be divided in the same ratio.
$\dfrac{{QS}}{{SR}} = \dfrac{{PQ}}{{PT}}$ ..... (1) [Basic proportionality theorem]
Now $RS\parallel SP$ and PR is transversal.
Therefore, $\angle SPR = \angle PRT$.....(2) [Alternate interior angles]
And $\angle QPS = \angle PTR$..... (3) [Corresponding angles]
Also given that PS is the bisector of $\angle QPR.$
$ \Rightarrow \angle QPR = \angle SPR$
From equations (2) and (3) $\angle PTR = \angle PRT$
Therefore, PT = PR [Sides opposite to equal angles of a triangle are equal]
Putting PT= PR in equation (1)
$\dfrac{{QS}}{{SR}} = \dfrac{{PQ}}{{PR}}$
Hence proved.
Note: Basic proportionality theorem states that if a line is drawn parallel to one side of a triangle, intersecting the other two sides at distinct points, then the other two sides are divided in the same ratio.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

