Answer
Verified
494.7k+ views
Hint: We are going to use basic proportionality theorem, Alternate interior angles and corresponding angles to solve this problem.
In $\vartriangle QRT,RT\parallel SP$ [By construction]
And PS intersects QT and QR at two distinct points P and Q.
Therefore, QT and QR will be divided in the same ratio.
$\dfrac{{QS}}{{SR}} = \dfrac{{PQ}}{{PT}}$ ..... (1) [Basic proportionality theorem]
Now $RS\parallel SP$ and PR is transversal.
Therefore, $\angle SPR = \angle PRT$.....(2) [Alternate interior angles]
And $\angle QPS = \angle PTR$..... (3) [Corresponding angles]
Also given that PS is the bisector of $\angle QPR.$
$ \Rightarrow \angle QPR = \angle SPR$
From equations (2) and (3) $\angle PTR = \angle PRT$
Therefore, PT = PR [Sides opposite to equal angles of a triangle are equal]
Putting PT= PR in equation (1)
$\dfrac{{QS}}{{SR}} = \dfrac{{PQ}}{{PR}}$
Hence proved.
Note: Basic proportionality theorem states that if a line is drawn parallel to one side of a triangle, intersecting the other two sides at distinct points, then the other two sides are divided in the same ratio.
In $\vartriangle QRT,RT\parallel SP$ [By construction]
And PS intersects QT and QR at two distinct points P and Q.
Therefore, QT and QR will be divided in the same ratio.
$\dfrac{{QS}}{{SR}} = \dfrac{{PQ}}{{PT}}$ ..... (1) [Basic proportionality theorem]
Now $RS\parallel SP$ and PR is transversal.
Therefore, $\angle SPR = \angle PRT$.....(2) [Alternate interior angles]
And $\angle QPS = \angle PTR$..... (3) [Corresponding angles]
Also given that PS is the bisector of $\angle QPR.$
$ \Rightarrow \angle QPR = \angle SPR$
From equations (2) and (3) $\angle PTR = \angle PRT$
Therefore, PT = PR [Sides opposite to equal angles of a triangle are equal]
Putting PT= PR in equation (1)
$\dfrac{{QS}}{{SR}} = \dfrac{{PQ}}{{PR}}$
Hence proved.
Note: Basic proportionality theorem states that if a line is drawn parallel to one side of a triangle, intersecting the other two sides at distinct points, then the other two sides are divided in the same ratio.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
How much time does it take to bleed after eating p class 12 biology CBSE