
In figure, PS is the bisector of $\angle QPR$ of $\vartriangle PQR.$ Prove that $\dfrac{{QS}}{{SR}} = \dfrac{{PQ}}{{PR}}$
Answer
607.8k+ views
Hint: We are going to use basic proportionality theorem, Alternate interior angles and corresponding angles to solve this problem.
In $\vartriangle QRT,RT\parallel SP$ [By construction]
And PS intersects QT and QR at two distinct points P and Q.
Therefore, QT and QR will be divided in the same ratio.
$\dfrac{{QS}}{{SR}} = \dfrac{{PQ}}{{PT}}$ ..... (1) [Basic proportionality theorem]
Now $RS\parallel SP$ and PR is transversal.
Therefore, $\angle SPR = \angle PRT$.....(2) [Alternate interior angles]
And $\angle QPS = \angle PTR$..... (3) [Corresponding angles]
Also given that PS is the bisector of $\angle QPR.$
$ \Rightarrow \angle QPR = \angle SPR$
From equations (2) and (3) $\angle PTR = \angle PRT$
Therefore, PT = PR [Sides opposite to equal angles of a triangle are equal]
Putting PT= PR in equation (1)
$\dfrac{{QS}}{{SR}} = \dfrac{{PQ}}{{PR}}$
Hence proved.
Note: Basic proportionality theorem states that if a line is drawn parallel to one side of a triangle, intersecting the other two sides at distinct points, then the other two sides are divided in the same ratio.
In $\vartriangle QRT,RT\parallel SP$ [By construction]
And PS intersects QT and QR at two distinct points P and Q.
Therefore, QT and QR will be divided in the same ratio.
$\dfrac{{QS}}{{SR}} = \dfrac{{PQ}}{{PT}}$ ..... (1) [Basic proportionality theorem]
Now $RS\parallel SP$ and PR is transversal.
Therefore, $\angle SPR = \angle PRT$.....(2) [Alternate interior angles]
And $\angle QPS = \angle PTR$..... (3) [Corresponding angles]
Also given that PS is the bisector of $\angle QPR.$
$ \Rightarrow \angle QPR = \angle SPR$
From equations (2) and (3) $\angle PTR = \angle PRT$
Therefore, PT = PR [Sides opposite to equal angles of a triangle are equal]
Putting PT= PR in equation (1)
$\dfrac{{QS}}{{SR}} = \dfrac{{PQ}}{{PR}}$
Hence proved.
Note: Basic proportionality theorem states that if a line is drawn parallel to one side of a triangle, intersecting the other two sides at distinct points, then the other two sides are divided in the same ratio.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

