Answer
Verified
468.6k+ views
Hint: Quadrant is one-fourth part of the circle and four quadrants sum up to become a circle. The area of the shaded portion can be found by subtracting the area of the square and the area of the four quadrants.
We know that the square makes a right angle at vertices. And it is given in the question that A, B, C and D are the centers of respective circles.
Considering the figure given in the question
We need to find the area of the shaded region.
We know that the circle sector which makes a right angle at the center is known as a quadrant.
By looking at the figure we can see that the parts of each circle lying inside the square represent the quadrant of the respective circles.
Now, we need to find the radius of the circle. Let the radius of each circle be r.
Circles are of the same size with the same radius so, observing the given figure we can say that $2\times r=$ side of the square.
AB is the side of the square which is equal to 14 cm as given in the question.
$\begin{align}
& 2\times r=14 \\
& r=7cm \\
\end{align}$
Now, we need to find the area of the shaded region given in the question.
Observing the figure,
Area of shaded region $=$ Area of square $-$ Area of the sum of 4 quadrants. …(1)
Now, we know that the area of the square $={{(side)}^{2}}$.
And, we also know that quadrant is one-fourth part of the circle and four quadrants sums to become a circle.
So, we can say that the area of the sum of 4 quadrants is equal to the area of a circle.
The area of the circle $=\pi {{r}^{2}}$.
Now, we can substitute the above result into equation (1).
Area of shaded region $=$ Area of square $-$ Area of the sum of 4 quadrants.
Area of the shaded region $=$${{(14)}^{2}}-\pi {{(7)}^{2}}$
Area of the shaded region $=196-\pi (49)$
Putting the value of $\pi =\dfrac{22}{7}$.
Area of shaded region $=42$ sq. Unit
Note: We can use an alternate method to find the individual area of the sector to find the area of the shaded region, as the area of the quadrant is given as $=\pi {{r}^{2}}\dfrac{{{360}^{\circ }}}{\theta }$ where $\theta $ is the angle made by sector at the center and we know that quadrant makes ${{90}^{\circ }}$ at the center so, the area of quadrant $=\dfrac{\pi {{r}^{2}}}{4}$.
We know that the square makes a right angle at vertices. And it is given in the question that A, B, C and D are the centers of respective circles.
Considering the figure given in the question
We need to find the area of the shaded region.
We know that the circle sector which makes a right angle at the center is known as a quadrant.
By looking at the figure we can see that the parts of each circle lying inside the square represent the quadrant of the respective circles.
Now, we need to find the radius of the circle. Let the radius of each circle be r.
Circles are of the same size with the same radius so, observing the given figure we can say that $2\times r=$ side of the square.
AB is the side of the square which is equal to 14 cm as given in the question.
$\begin{align}
& 2\times r=14 \\
& r=7cm \\
\end{align}$
Now, we need to find the area of the shaded region given in the question.
Observing the figure,
Area of shaded region $=$ Area of square $-$ Area of the sum of 4 quadrants. …(1)
Now, we know that the area of the square $={{(side)}^{2}}$.
And, we also know that quadrant is one-fourth part of the circle and four quadrants sums to become a circle.
So, we can say that the area of the sum of 4 quadrants is equal to the area of a circle.
The area of the circle $=\pi {{r}^{2}}$.
Now, we can substitute the above result into equation (1).
Area of shaded region $=$ Area of square $-$ Area of the sum of 4 quadrants.
Area of the shaded region $=$${{(14)}^{2}}-\pi {{(7)}^{2}}$
Area of the shaded region $=196-\pi (49)$
Putting the value of $\pi =\dfrac{22}{7}$.
Area of shaded region $=42$ sq. Unit
Note: We can use an alternate method to find the individual area of the sector to find the area of the shaded region, as the area of the quadrant is given as $=\pi {{r}^{2}}\dfrac{{{360}^{\circ }}}{\theta }$ where $\theta $ is the angle made by sector at the center and we know that quadrant makes ${{90}^{\circ }}$ at the center so, the area of quadrant $=\dfrac{\pi {{r}^{2}}}{4}$.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
10 examples of evaporation in daily life with explanations
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Difference Between Plant Cell and Animal Cell