
In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer.(i) $f:R\to R$ defined by $f(x)=3-4x$(ii) $f:R\to R$ defined by $f(x)=1+{{x}^{2}}$
Answer
593.7k+ views
Hint: To find the function is one-one let ${{x}_{1}},{{x}_{2}}\in R$ such that $f({{x}_{1}})=f({{x}_{2}})$ after that check whether the function is invertible. If the function is invertible then it is one-one onto function and if any function is one -one and onto then it is also known as bijective function.
Complete step-by-step answer:
Note: Read the question and see what is asked. Your concept regarding functions should be clear. A proper assumption should be made. Do not make silly mistakes while substituting. Equate it in a proper manner and don't confuse yourself.
A function is a relation which describes that there should be only one output for each input. OR We can say that, a special kind of relation (a set of ordered pairs) which follows a rule i.e every X-value should be associated to only one y-value is called a Function.
To recall, a function is something, which relates elements/values of one set to the elements/values of another set, in such a way that elements of the second set are identically determined by the elements of the first set. A function has many types which define the relationship between two sets in a different pattern. There are various types of functions like one to one function, onto function, many to one function, etc.
A function has many types and one of the most common functions used is the one-to-one function or injective function. Also, we will be learning here the inverse of this function.
One to one function basically denotes the mapping of two sets. A function g is one-to-one if every element of the range of g corresponds to exactly one element of the domain of g. One-to-one is also written as 1-1. A function f() is a method, which relates elements/values of one variable to the elements/values of another variable, in such a way that elements of the second variable are identically determined by the elements of the first variable.
Onto function could be explained by considering two sets, Set A and Set B which consist of elements. If for every element of B there is at least one or more than one element matching with A, then the function is said to be onto function or surjective function.
A function is said to be bijective or bijection, if a function f: A → B satisfies both the injective (one-to-one function) and surjective function (onto function) properties. It means that every element “b” in the codomain B, there is exactly one element “a” in the domain A. such that f(a) = b. If the function satisfies this condition, then it is known as one-to-one correspondence.
It is given that $f:R\to R$defined by $f(x)=3-4x$ .
Let ${{x}_{1}},{{x}_{2}}\in R$ such that $f({{x}_{1}})=f({{x}_{2}})$ .
$3-4{{x}_{1}}=3-4{{x}_{2}}$
$-4{{x}_{1}}=-4{{x}_{2}}$
$f$ is one-one.
We know one thing: if a function $f(x)$ is invertible then $f(x)$ is definitely a bijective function. means, $f(x)$ will be one - one and onto.
Let's try to do the inverse of $f(x)=3-4x$.
$y=3-4x$
$x=\dfrac{y-3}{4}$
Hence, $f(x)$ is invertible.
So $f(x)$ is one - one and onto function.
Hence, $f(x)$ is a bijective function (if any function is one -one and onto then it is also known as a bijective function.)
It is given that $f:R\to R$defined by $f(x)=1+{{x}^{2}}$ .
Let ${{x}_{1}},{{x}_{2}}\in R$ such that $f({{x}_{1}})=f({{x}_{2}})$ .
$1+{{x}_{1}}^{2}=1+{{x}_{2}}^{2}$
${{x}_{1}}=\pm {{x}_{2}}$
Now, $f(1)=f(-1)=2$ .
$f$ is not one-one.
Also for all real values of $x$ , $f(x)$ is always greater than $1$ . so, the range of $f(x)\in (1,\infty )$ but co-domain belongs to $R$ .
e.g., Co - domain $\ne $ range
so, $f$ is not onto function.
Also f is not a bijective function.
Note: Read the question and see what is asked. Your concept regarding functions should be clear. A proper assumption should be made. Do not make silly mistakes while substituting. Equate it in a proper manner and don't confuse yourself.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Trending doubts
Who composed the song Vande Mataram A RabindraNath class 10 social science CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The revolutionary who died after 63 days of the hunger class 10 social science CBSE

The slogan of Bande Mataram was first adopted during class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

