
In $\Delta {\text{ABC}}$, AD is perpendicular to BC. Prove that ${\left( {{\text{AB}}} \right)^2} + {\left( {{\text{CD}}} \right)^2} = {\left( {{\text{AC}}} \right)^2} + {\left( {{\text{BD}}} \right)^2}$.

Answer
517.2k+ views
Hint- Here, we will be proceeding further with the help of Pythagoras theorem.
Clearly, from the figure we can see that there are total two right angled triangles $\Delta {\text{ABD}}$ and $\Delta {\text{ACD}}$.
As we know that the side opposite to the right angle in any right angled triangle is hypotenuse, the side opposite to the considered acute angle is perpendicular and the remaining side is base.
In right angled $\Delta {\text{ABD}}$, AB is a hypotenuse and in $\Delta {\text{ACD}}$, AC is a hypotenuse.
According to Pythagoras theorem, we know that
${\left( {{\text{Hypotenuse}}} \right)^2} = {\left( {{\text{Perpendicular}}} \right)^2} + {\left( {{\text{Base}}} \right)^2}$
Therefore, in right angled $\Delta {\text{ABD}}$, ${\left( {{\text{AB}}} \right)^2} = {\left( {{\text{AD}}} \right)^2} + {\left( {{\text{BD}}} \right)^2}{\text{ }} \to {\text{(1)}}$
and in right angled $\Delta {\text{ACD}}$, ${\left( {{\text{AC}}} \right)^2} = {\left( {{\text{AD}}} \right)^2} + {\left( {{\text{CD}}} \right)^2} \Rightarrow {\left( {{\text{AD}}} \right)^2} = {\left( {{\text{AC}}} \right)^2} - {\left( {{\text{CD}}} \right)^2}{\text{ }} \to {\text{(2)}}$
Using equation (2) in equation (1), we get
${\left( {{\text{AB}}} \right)^2} = {\left( {{\text{AC}}} \right)^2} - {\left( {{\text{CD}}} \right)^2} + {\left( {{\text{BD}}} \right)^2} \Rightarrow {\left( {{\text{AB}}} \right)^2} + {\left( {{\text{CD}}} \right)^2} = {\left( {{\text{AC}}} \right)^2} + {\left( {{\text{BD}}} \right)^2}$
The above equation is what we needed to prove.
Note- In these types of problems, Pythagora's theorem is to be used keeping in mind the concept of a right triangle i.e., which side is to be taken hypotenuse. Also, in the above problem the choice between perpendicular and base is flexible since that choice depends upon the acute angle considered.
Clearly, from the figure we can see that there are total two right angled triangles $\Delta {\text{ABD}}$ and $\Delta {\text{ACD}}$.
As we know that the side opposite to the right angle in any right angled triangle is hypotenuse, the side opposite to the considered acute angle is perpendicular and the remaining side is base.
In right angled $\Delta {\text{ABD}}$, AB is a hypotenuse and in $\Delta {\text{ACD}}$, AC is a hypotenuse.
According to Pythagoras theorem, we know that
${\left( {{\text{Hypotenuse}}} \right)^2} = {\left( {{\text{Perpendicular}}} \right)^2} + {\left( {{\text{Base}}} \right)^2}$
Therefore, in right angled $\Delta {\text{ABD}}$, ${\left( {{\text{AB}}} \right)^2} = {\left( {{\text{AD}}} \right)^2} + {\left( {{\text{BD}}} \right)^2}{\text{ }} \to {\text{(1)}}$
and in right angled $\Delta {\text{ACD}}$, ${\left( {{\text{AC}}} \right)^2} = {\left( {{\text{AD}}} \right)^2} + {\left( {{\text{CD}}} \right)^2} \Rightarrow {\left( {{\text{AD}}} \right)^2} = {\left( {{\text{AC}}} \right)^2} - {\left( {{\text{CD}}} \right)^2}{\text{ }} \to {\text{(2)}}$
Using equation (2) in equation (1), we get
${\left( {{\text{AB}}} \right)^2} = {\left( {{\text{AC}}} \right)^2} - {\left( {{\text{CD}}} \right)^2} + {\left( {{\text{BD}}} \right)^2} \Rightarrow {\left( {{\text{AB}}} \right)^2} + {\left( {{\text{CD}}} \right)^2} = {\left( {{\text{AC}}} \right)^2} + {\left( {{\text{BD}}} \right)^2}$
The above equation is what we needed to prove.
Note- In these types of problems, Pythagora's theorem is to be used keeping in mind the concept of a right triangle i.e., which side is to be taken hypotenuse. Also, in the above problem the choice between perpendicular and base is flexible since that choice depends upon the acute angle considered.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE

The area of a 6m wide road outside a garden in all class 10 maths CBSE

What is the electric flux through a cube of side 1 class 10 physics CBSE

If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE

The radius and height of a cylinder are in the ratio class 10 maths CBSE

An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE

Trending doubts
For Frost what do fire and ice stand for Here are some class 10 english CBSE

What did the military generals do How did their attitude class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What did being free mean to Mandela as a boy and as class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What did Valli find about the bus journey How did she class 10 english CBSE
