
In an isosceles triangle $ABC$, with $AB = AC$, the bisectors of $\angle B = \angle C$ intersect each other at $O$.Join $A$ to $O$. Show that $(i) OB = OC $ and $(ii) AO$ bisects $\angle A$.
Answer
607.8k+ views
Hint: Join $A$ to $O$. Apply the given condition to the isosceles triangle and use similarity criterion.
According to given data we have 3 conditions,
$AB = AC \to (1)$
$OB$ is the bisector of $\angle B$
So,$\angle ABO = \angle OBC = \dfrac{1}{2}\angle B \to (2)$
$OC$ is the bisector of$\angle C$
So,$\angle ACO = \angle OCB = \dfrac{1}{2}\angle C$$ \to (3)$
Case-1
So, here we have to prove $OB = OC$
Proof:
Now by using condition (1) we can say that,
$AB = AC$
From this condition we say that
$ \Rightarrow \angle ACB = \angle ABC$ [ Where we know that Angles opposite to equal sides are equal]
$\
\Rightarrow \dfrac{1}{2}\angle ACB = \dfrac{1}{2}\angle ABC \\
\\
\ $
$ \Rightarrow \angle OCB = \angle OBC$ [From (2) and (3)]
Hence,
$OB = OC$ [Sides opposite to equal angles are equal]
Hence proved that $OB = OC$.
Case-2
We have to prove that $\angle OAB = \angle OAC$
By using case (1) we know that $OB = OC$
And also from $\Delta ABO$ and$\Delta ACO$, we have
$ \Rightarrow AB = AC$ (Given)
$ \Rightarrow AO = OA$ (Common)
$ \Rightarrow OB = OC$(From (case 1))
$\therefore \Delta ABO \cong \Delta ACO$ (By SSS Congruence rule)
$ \Rightarrow \angle OAB = \angle OAC$ (CPCPT Theorem)
Hence we have proved that$\angle OAB = \angle OAC$.
CASE - 1 CASE - 2
NOTE: In this problem given construction is mandatory to prove the given statements so join $A$ and $O$ points.
According to given data we have 3 conditions,
$AB = AC \to (1)$
$OB$ is the bisector of $\angle B$
So,$\angle ABO = \angle OBC = \dfrac{1}{2}\angle B \to (2)$
$OC$ is the bisector of$\angle C$
So,$\angle ACO = \angle OCB = \dfrac{1}{2}\angle C$$ \to (3)$
Case-1
So, here we have to prove $OB = OC$
Proof:
Now by using condition (1) we can say that,
$AB = AC$
From this condition we say that
$ \Rightarrow \angle ACB = \angle ABC$ [ Where we know that Angles opposite to equal sides are equal]
$\
\Rightarrow \dfrac{1}{2}\angle ACB = \dfrac{1}{2}\angle ABC \\
\\
\ $
$ \Rightarrow \angle OCB = \angle OBC$ [From (2) and (3)]
Hence,
$OB = OC$ [Sides opposite to equal angles are equal]
Hence proved that $OB = OC$.
Case-2
We have to prove that $\angle OAB = \angle OAC$
By using case (1) we know that $OB = OC$
And also from $\Delta ABO$ and$\Delta ACO$, we have
$ \Rightarrow AB = AC$ (Given)
$ \Rightarrow AO = OA$ (Common)
$ \Rightarrow OB = OC$(From (case 1))
$\therefore \Delta ABO \cong \Delta ACO$ (By SSS Congruence rule)
$ \Rightarrow \angle OAB = \angle OAC$ (CPCPT Theorem)
Hence we have proved that$\angle OAB = \angle OAC$.
CASE - 1 CASE - 2
NOTE: In this problem given construction is mandatory to prove the given statements so join $A$ and $O$ points.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

