
In an isosceles triangle ABC with AB = AC, D and E are points on BC such that BE = CD. Show that AD = AE.

Answer
424k+ views
Hint: Use the property given as “Angles of equal opposite sides are equal in a triangle”, to prove the triangles ABD and C.P.C.T prove the sides AD and AE are equal to each other.
Complete step-by-step answer:
As we have an isosceles triangle ABC with AB = AC, where D and E are points on BC such that BE = CD and we need to prove that the sides AD and AE are equal i.e. AD = AE.
So, diagram can be given as
So, we have
AB = AC……………..(i)
BE = CD…………….(ii)
Now, we know the property of triangles that opposite angles of the opposite sides are equal if sides are equal. It means \[\angle B\] and $\angle C$ will be equal as opposite sides of $\angle B$ and $\angle C$ i.e. AC and AB, are equal. Hence, we get
$\angle B=\angle C...............\left( iii \right)$
And from equation (ii), we (iii) have BE = CD
Now, subtract DE from both sides of terms of the above equation. So, we get
BE – DE = CD – DE
Now, we can observe that the diagram is replaced by side BD and CD – DE by side CE. Hence, we get above equation as
BD = CE………………….(iv)
Now, in $\Delta ABD$and $\Delta AEC$ , we have
AB = AC (from equation (i))
\[\angle B=\angle C\] (from equation (iii))
BD = CE (from equation (iv))
Hence, $\Delta ABD$ is congruent to $\Delta AEC$ by SAS criteria of congruence. So, we get
$\Delta ABD\cong \Delta AEC$
So, now all the corresponding sides and angles of triangles ABD and ACE are equal by the C.P.C.T property of congruent triangles.
Hence, we get
AD = AE ( C.P.C.T)
So, it proved that AD and AE are equal.
Note: Another approach for proving AD = AE, we can prove the triangles ABE and ADE as congruent triangle in the following way:
AB = AC
BE = DC
$\angle B=\angle C$
By SAS criteria $\Delta ABE\cong \Delta ADC.$So, it can be another approach. Getting the equation $\angle B=\angle C$ is the key point for proving the triangles ABD and ACE to congruent problems and need to use property for getting it.
Complete step-by-step answer:
As we have an isosceles triangle ABC with AB = AC, where D and E are points on BC such that BE = CD and we need to prove that the sides AD and AE are equal i.e. AD = AE.
So, diagram can be given as

So, we have
AB = AC……………..(i)
BE = CD…………….(ii)
Now, we know the property of triangles that opposite angles of the opposite sides are equal if sides are equal. It means \[\angle B\] and $\angle C$ will be equal as opposite sides of $\angle B$ and $\angle C$ i.e. AC and AB, are equal. Hence, we get
$\angle B=\angle C...............\left( iii \right)$
And from equation (ii), we (iii) have BE = CD
Now, subtract DE from both sides of terms of the above equation. So, we get
BE – DE = CD – DE
Now, we can observe that the diagram is replaced by side BD and CD – DE by side CE. Hence, we get above equation as
BD = CE………………….(iv)
Now, in $\Delta ABD$and $\Delta AEC$ , we have
AB = AC (from equation (i))
\[\angle B=\angle C\] (from equation (iii))
BD = CE (from equation (iv))
Hence, $\Delta ABD$ is congruent to $\Delta AEC$ by SAS criteria of congruence. So, we get
$\Delta ABD\cong \Delta AEC$
So, now all the corresponding sides and angles of triangles ABD and ACE are equal by the C.P.C.T property of congruent triangles.
Hence, we get
AD = AE ( C.P.C.T)
So, it proved that AD and AE are equal.
Note: Another approach for proving AD = AE, we can prove the triangles ABE and ADE as congruent triangle in the following way:
AB = AC
BE = DC
$\angle B=\angle C$
By SAS criteria $\Delta ABE\cong \Delta ADC.$So, it can be another approach. Getting the equation $\angle B=\angle C$ is the key point for proving the triangles ABD and ACE to congruent problems and need to use property for getting it.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
A number is chosen from 1 to 20 Find the probabili-class-10-maths-CBSE

Distinguish between the reserved forests and protected class 10 biology CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

Difference between mass and weight class 10 physics CBSE

Who gives recognition to political parties as National class 10 social science CBSE

What is oxen Plural singular plural possessive or singular class 10 english CBSE
