Answer
Verified
495k+ views
Hint: since we are given length of parallel sides and hence we should use
the area formula of parallel side and use it.
Let the angle made by hypotenuse of the right angle triangle with the base the trapezium be $\theta $
now the length of the base of the triangle is $a\cos \theta $
and the length of the perpendicular of the triangle or the distance between the
parallel sides of the trapezium is $a\sin \theta $
now the area of the trapezium = $\dfrac{1}{2}$(sum of parallel sides)$ \times $(distance between the parallel sides)
now for our given trapezium substituting the values we get
area = A=$\dfrac{1}{2} \times (a + 2a\;cos\theta + a) \times (a\;sin\theta )$
where $a = 30$
now on solving A =\[{a^2} \times (\;cos\theta + 1) \times (sin\theta )\]
on opening the brackets and using the identity $\sin 2\theta = 2\cos \theta \sin \theta $
A=\[{a^2}(\dfrac{1}{2} \times sin2\theta + \;sin\theta )\]
Now to maximize A we need to differentiate the equation for A with respect
to $\theta {\text{ and put }}\dfrac{{dA}}{{d\theta }} = 0$
now on differentiating the equation of A we get and equating it to $0$
\[(\cos 2\theta + \;\cos \theta ) = 0\]
Now using identity of $\cos 2\theta = 2{\cos ^2}\theta - 1$
And simplifying we get
\[
2\;co{s^2}\theta + \;cos\theta - 1 = 0 \\
\Rightarrow \cos \theta = \dfrac{1}{2}, - 1 \\
\Rightarrow \theta = \dfrac{\pi }{3},\pi \\
\]
But since we want the smallest angle hence answer is $\dfrac{\pi }{3}$,option C
Note: while calculating questions of area of various polygons use various trigonometric formulae to simplify the calculation
the area formula of parallel side and use it.
Let the angle made by hypotenuse of the right angle triangle with the base the trapezium be $\theta $
now the length of the base of the triangle is $a\cos \theta $
and the length of the perpendicular of the triangle or the distance between the
parallel sides of the trapezium is $a\sin \theta $
now the area of the trapezium = $\dfrac{1}{2}$(sum of parallel sides)$ \times $(distance between the parallel sides)
now for our given trapezium substituting the values we get
area = A=$\dfrac{1}{2} \times (a + 2a\;cos\theta + a) \times (a\;sin\theta )$
where $a = 30$
now on solving A =\[{a^2} \times (\;cos\theta + 1) \times (sin\theta )\]
on opening the brackets and using the identity $\sin 2\theta = 2\cos \theta \sin \theta $
A=\[{a^2}(\dfrac{1}{2} \times sin2\theta + \;sin\theta )\]
Now to maximize A we need to differentiate the equation for A with respect
to $\theta {\text{ and put }}\dfrac{{dA}}{{d\theta }} = 0$
now on differentiating the equation of A we get and equating it to $0$
\[(\cos 2\theta + \;\cos \theta ) = 0\]
Now using identity of $\cos 2\theta = 2{\cos ^2}\theta - 1$
And simplifying we get
\[
2\;co{s^2}\theta + \;cos\theta - 1 = 0 \\
\Rightarrow \cos \theta = \dfrac{1}{2}, - 1 \\
\Rightarrow \theta = \dfrac{\pi }{3},\pi \\
\]
But since we want the smallest angle hence answer is $\dfrac{\pi }{3}$,option C
Note: while calculating questions of area of various polygons use various trigonometric formulae to simplify the calculation
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Discuss the main reasons for poverty in India
A Paragraph on Pollution in about 100-150 Words
Why is monsoon considered a unifying bond class 10 social science CBSE
What makes elections in India democratic class 11 social science CBSE
What does the term Genocidal War refer to class 12 social science CBSE
A weight hangs freely from the end of a spring A boy class 11 physics CBSE