Answer
Verified
495.9k+ views
Hint- Here, we will be using Pythagoras theorem and will be converting all other sides in terms of sides AD and AB which are present in the equation which needs to be proved.
To prove- $9{\left( {{\text{AD}}} \right)^2} = 7{\left( {{\text{AB}}} \right)^2}$
Let us draw an equilateral $\vartriangle {\text{ABC}}$ with sides AB, BC and AC equal to each other. Also, draw a line from the vertex A which will meet the side BC at point D such that ${\text{BD}} = \dfrac{1}{3}\left( {{\text{BC}}} \right)$. Also, draw a perpendicular from the vertex A on the side BC which divides line BC into two equal parts i.e., ${\text{BE}} = {\text{CE}} = \dfrac{{{\text{BC}}}}{2}$
As, ${\text{BD}} = \dfrac{1}{3}\left( {{\text{BC}}} \right){\text{ }} \to {\text{(1)}}$
Here, ${\text{AB}} = {\text{BC}} = {\text{AC}}$ and ${\text{DE}} = \left( {{\text{BE}} - {\text{BD}}} \right)$
As we know that, Pythagoras theorem states that the square of the hypotenuse is equal to the sum of the squares of perpendicular and base in a right angled triangle.
In right angled $\vartriangle {\text{ADE}}$,
Using Pythagoras theorem \[{\left( {{\text{AD}}} \right)^2} = {\left( {{\text{AE}}} \right)^2} + {\left( {{\text{DE}}} \right)^2} \Rightarrow {\left( {{\text{AD}}} \right)^2} = {\left( {{\text{AE}}} \right)^2} + {\left( {{\text{BE}} - {\text{BD}}} \right)^2}{\text{ }} \to {\text{(2)}}\]
In right angled $\vartriangle {\text{ABE}}$,
Using Pythagoras theorem \[{\left( {{\text{AB}}} \right)^2} = {\left( {{\text{AE}}} \right)^2} + {\left( {{\text{BE}}} \right)^2} \Rightarrow {\left( {{\text{AE}}} \right)^2} = {\left( {{\text{AB}}} \right)^2} - {\left( {{\text{BE}}} \right)^2} \Rightarrow {\left( {{\text{AE}}} \right)^2} = {\left( {{\text{AB}}} \right)^2} - {\left( {\dfrac{{{\text{BC}}}}{2}} \right)^2}{\text{ }} \to {\text{(3)}}\]
Now using equation (3) in equation (2), we get
\[ \Rightarrow {\left( {{\text{AD}}} \right)^2} = {\left( {{\text{AB}}} \right)^2} - {\left( {\dfrac{{{\text{BC}}}}{2}} \right)^2} + {\left( {{\text{BE}} - {\text{BD}}} \right)^2}{\text{ }}\]
Using ${\text{BE}} = \dfrac{{{\text{BC}}}}{2}$ and ${\text{BD}} = \dfrac{1}{3}\left( {{\text{BC}}} \right)$ , the above equation becomes
\[
\Rightarrow {\left( {{\text{AD}}} \right)^2} = {\left( {{\text{AB}}} \right)^2} - {\left( {\dfrac{{{\text{BC}}}}{2}} \right)^2} + {\left( {\dfrac{{{\text{BC}}}}{2} - \dfrac{{{\text{BC}}}}{3}} \right)^2} = {\left( {{\text{AB}}} \right)^2} - \left[ {\dfrac{{{{\left( {{\text{BC}}} \right)}^2}}}{4}} \right] + {\left( {\dfrac{{{\text{3BC}} - {\text{2BC}}}}{6}} \right)^2} = {\left( {{\text{AB}}} \right)^2} - \left[ {\dfrac{{{{\left( {{\text{BC}}} \right)}^2}}}{4}} \right] + \left[ {\dfrac{{{{\left( {{\text{BC}}} \right)}^2}}}{{36}}} \right] \\
\Rightarrow {\left( {{\text{AD}}} \right)^2} = {\left( {{\text{AB}}} \right)^2} + \left[ {\dfrac{{{{\left( {{\text{BC}}} \right)}^2}}}{{36}} - \dfrac{{{{\left( {{\text{BC}}} \right)}^2}}}{4}} \right] = {\left( {{\text{AB}}} \right)^2} + \left[ {\dfrac{{{{\left( {{\text{BC}}} \right)}^2} - 9{{\left( {{\text{BC}}} \right)}^2}}}{{36}}} \right] = {\left( {{\text{AB}}} \right)^2} + \left[ {\dfrac{{ - 8{{\left( {{\text{BC}}} \right)}^2}}}{{36}}} \right] = {\left( {{\text{AB}}} \right)^2} - \left[ {\dfrac{{2{{\left( {{\text{BC}}} \right)}^2}}}{9}} \right] \\
\]
Also, ${\text{AB}} = {\text{BC}} = {\text{AC}} \Rightarrow {\text{BC}} = {\text{AB}}$so the above equation becomes
\[
\Rightarrow {\left( {{\text{AD}}} \right)^2} = {\left( {{\text{AB}}} \right)^2} - \left[ {\dfrac{{2{{\left( {{\text{BC}}} \right)}^2}}}{9}} \right] = {\left( {{\text{AB}}} \right)^2} - \dfrac{{2{{\left( {{\text{AB}}} \right)}^2}}}{9} = \dfrac{{9{{\left( {{\text{AB}}} \right)}^2} - 2{{\left( {{\text{AB}}} \right)}^2}}}{9} = \dfrac{{7{{\left( {{\text{AB}}} \right)}^2}}}{9} \\
\Rightarrow 9{\left( {{\text{AD}}} \right)^2} = 7{\left( {{\text{AB}}} \right)^2} \\
\]
The above equation is the equation we needed to prove. Hence it is proved.
Note- In any right angled triangle, the side opposite to the right angle is known as hypotenuse. In this particular problem in order to obtain the LHS of the equation which needs to be proved, Pythagoras theorem is applied in the right triangle ADE and then all the other sides except AD are converted in terms of side A
To prove- $9{\left( {{\text{AD}}} \right)^2} = 7{\left( {{\text{AB}}} \right)^2}$
Let us draw an equilateral $\vartriangle {\text{ABC}}$ with sides AB, BC and AC equal to each other. Also, draw a line from the vertex A which will meet the side BC at point D such that ${\text{BD}} = \dfrac{1}{3}\left( {{\text{BC}}} \right)$. Also, draw a perpendicular from the vertex A on the side BC which divides line BC into two equal parts i.e., ${\text{BE}} = {\text{CE}} = \dfrac{{{\text{BC}}}}{2}$
As, ${\text{BD}} = \dfrac{1}{3}\left( {{\text{BC}}} \right){\text{ }} \to {\text{(1)}}$
Here, ${\text{AB}} = {\text{BC}} = {\text{AC}}$ and ${\text{DE}} = \left( {{\text{BE}} - {\text{BD}}} \right)$
As we know that, Pythagoras theorem states that the square of the hypotenuse is equal to the sum of the squares of perpendicular and base in a right angled triangle.
In right angled $\vartriangle {\text{ADE}}$,
Using Pythagoras theorem \[{\left( {{\text{AD}}} \right)^2} = {\left( {{\text{AE}}} \right)^2} + {\left( {{\text{DE}}} \right)^2} \Rightarrow {\left( {{\text{AD}}} \right)^2} = {\left( {{\text{AE}}} \right)^2} + {\left( {{\text{BE}} - {\text{BD}}} \right)^2}{\text{ }} \to {\text{(2)}}\]
In right angled $\vartriangle {\text{ABE}}$,
Using Pythagoras theorem \[{\left( {{\text{AB}}} \right)^2} = {\left( {{\text{AE}}} \right)^2} + {\left( {{\text{BE}}} \right)^2} \Rightarrow {\left( {{\text{AE}}} \right)^2} = {\left( {{\text{AB}}} \right)^2} - {\left( {{\text{BE}}} \right)^2} \Rightarrow {\left( {{\text{AE}}} \right)^2} = {\left( {{\text{AB}}} \right)^2} - {\left( {\dfrac{{{\text{BC}}}}{2}} \right)^2}{\text{ }} \to {\text{(3)}}\]
Now using equation (3) in equation (2), we get
\[ \Rightarrow {\left( {{\text{AD}}} \right)^2} = {\left( {{\text{AB}}} \right)^2} - {\left( {\dfrac{{{\text{BC}}}}{2}} \right)^2} + {\left( {{\text{BE}} - {\text{BD}}} \right)^2}{\text{ }}\]
Using ${\text{BE}} = \dfrac{{{\text{BC}}}}{2}$ and ${\text{BD}} = \dfrac{1}{3}\left( {{\text{BC}}} \right)$ , the above equation becomes
\[
\Rightarrow {\left( {{\text{AD}}} \right)^2} = {\left( {{\text{AB}}} \right)^2} - {\left( {\dfrac{{{\text{BC}}}}{2}} \right)^2} + {\left( {\dfrac{{{\text{BC}}}}{2} - \dfrac{{{\text{BC}}}}{3}} \right)^2} = {\left( {{\text{AB}}} \right)^2} - \left[ {\dfrac{{{{\left( {{\text{BC}}} \right)}^2}}}{4}} \right] + {\left( {\dfrac{{{\text{3BC}} - {\text{2BC}}}}{6}} \right)^2} = {\left( {{\text{AB}}} \right)^2} - \left[ {\dfrac{{{{\left( {{\text{BC}}} \right)}^2}}}{4}} \right] + \left[ {\dfrac{{{{\left( {{\text{BC}}} \right)}^2}}}{{36}}} \right] \\
\Rightarrow {\left( {{\text{AD}}} \right)^2} = {\left( {{\text{AB}}} \right)^2} + \left[ {\dfrac{{{{\left( {{\text{BC}}} \right)}^2}}}{{36}} - \dfrac{{{{\left( {{\text{BC}}} \right)}^2}}}{4}} \right] = {\left( {{\text{AB}}} \right)^2} + \left[ {\dfrac{{{{\left( {{\text{BC}}} \right)}^2} - 9{{\left( {{\text{BC}}} \right)}^2}}}{{36}}} \right] = {\left( {{\text{AB}}} \right)^2} + \left[ {\dfrac{{ - 8{{\left( {{\text{BC}}} \right)}^2}}}{{36}}} \right] = {\left( {{\text{AB}}} \right)^2} - \left[ {\dfrac{{2{{\left( {{\text{BC}}} \right)}^2}}}{9}} \right] \\
\]
Also, ${\text{AB}} = {\text{BC}} = {\text{AC}} \Rightarrow {\text{BC}} = {\text{AB}}$so the above equation becomes
\[
\Rightarrow {\left( {{\text{AD}}} \right)^2} = {\left( {{\text{AB}}} \right)^2} - \left[ {\dfrac{{2{{\left( {{\text{BC}}} \right)}^2}}}{9}} \right] = {\left( {{\text{AB}}} \right)^2} - \dfrac{{2{{\left( {{\text{AB}}} \right)}^2}}}{9} = \dfrac{{9{{\left( {{\text{AB}}} \right)}^2} - 2{{\left( {{\text{AB}}} \right)}^2}}}{9} = \dfrac{{7{{\left( {{\text{AB}}} \right)}^2}}}{9} \\
\Rightarrow 9{\left( {{\text{AD}}} \right)^2} = 7{\left( {{\text{AB}}} \right)^2} \\
\]
The above equation is the equation we needed to prove. Hence it is proved.
Note- In any right angled triangle, the side opposite to the right angle is known as hypotenuse. In this particular problem in order to obtain the LHS of the equation which needs to be proved, Pythagoras theorem is applied in the right triangle ADE and then all the other sides except AD are converted in terms of side A
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life