Answer
Verified
495.3k+ views
Let us consider a triangle$\Delta abc$, where $a,b,c$ are the sides of triangle
Given $c$ is the length of the third side of the triangle, then $a,b$ be the other two sides of the triangle.
Given sum of lengths of two sides = $x$
$a + b = x \to (1)$
And also given product of length of same two sides = $y$
$ab = y \to (2)$
Given condition
$ \Rightarrow $${x^2} - {y^2} = {c^2}$
Let us substitute the $x$ and $y$ values in the above equation
$
\Rightarrow {(a + b)^2} - {c^2} = ab \\
\Rightarrow {a^2} + {b^2} + 2ab - {c^2} = ab \\
\Rightarrow {a^2} + {b^2} - {c^2} = ab - 2ab \\
\Rightarrow {a^2} + {b^2} - {c^2} = - ab \\
$
Let us divide with $2ab$on both sides we get
$
\Rightarrow \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}} = \dfrac{{ - ab}}{{2ab}} \\
\Rightarrow \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}} = \dfrac{{ - 1}}{2} \to (3) \\
$
Apply the cosine rule formula where $COSC = \dfrac{{{a^2} + {b^2} - c2}}{{2ab}}$
From the cosine rule we can rewrite the equation $'3'as$
$
COSC = \dfrac{{ - 1}}{2} \\
\angle C = \dfrac{{2\pi }}{3} \\
$
We know that circumradius of triangle is $R = \dfrac{C}{{2SINC}}$
On substituting the value we get $R = \dfrac{C}{{\sqrt 3 }}$
Therefore circumradius of triangle is $R = \dfrac{C}{{\sqrt 3 }}$
( B) is the correct option
NOTE: Make a note that after substituting the value in the given condition we have divided the equation with $2ab$ on both sides, where we directly get the required value of circumradius after applying cosine rule.
Given $c$ is the length of the third side of the triangle, then $a,b$ be the other two sides of the triangle.
Given sum of lengths of two sides = $x$
$a + b = x \to (1)$
And also given product of length of same two sides = $y$
$ab = y \to (2)$
Given condition
$ \Rightarrow $${x^2} - {y^2} = {c^2}$
Let us substitute the $x$ and $y$ values in the above equation
$
\Rightarrow {(a + b)^2} - {c^2} = ab \\
\Rightarrow {a^2} + {b^2} + 2ab - {c^2} = ab \\
\Rightarrow {a^2} + {b^2} - {c^2} = ab - 2ab \\
\Rightarrow {a^2} + {b^2} - {c^2} = - ab \\
$
Let us divide with $2ab$on both sides we get
$
\Rightarrow \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}} = \dfrac{{ - ab}}{{2ab}} \\
\Rightarrow \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}} = \dfrac{{ - 1}}{2} \to (3) \\
$
Apply the cosine rule formula where $COSC = \dfrac{{{a^2} + {b^2} - c2}}{{2ab}}$
From the cosine rule we can rewrite the equation $'3'as$
$
COSC = \dfrac{{ - 1}}{2} \\
\angle C = \dfrac{{2\pi }}{3} \\
$
We know that circumradius of triangle is $R = \dfrac{C}{{2SINC}}$
On substituting the value we get $R = \dfrac{C}{{\sqrt 3 }}$
Therefore circumradius of triangle is $R = \dfrac{C}{{\sqrt 3 }}$
( B) is the correct option
NOTE: Make a note that after substituting the value in the given condition we have divided the equation with $2ab$ on both sides, where we directly get the required value of circumradius after applying cosine rule.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Kaziranga National Park is famous for A Lion B Tiger class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE