In a triangle ABC, N is appointed on AC such that BN is perpendicular to AC. If $B{N^2} = AN \cdot NC$, prove that $\angle B = {90^0}$.
Answer
Verified
507k+ views
Hint: - Use Pythagoras Theorem, $\left[ {{{\left( {{\text{Hypotenuse}}} \right)}^2} = {{\left( {{\text{Perpendicular}}} \right)}^2} + {{\left( {{\text{Base}}} \right)}^2}} \right]$
Given:
BN is perpendicular to AC
\[\therefore \angle BNC = \angle BNA = 90\]
And it is also given that $B{N^2} = AN \cdot NC............\left( 1 \right)$
Apply Pythagoras Theorem in $\Delta BNC$
$\therefore {\left( {BC} \right)^2} = {\left( {BN} \right)^2} + {\left( {NC} \right)^2}$
From equation 1
${\left( {BC} \right)^2} = \left( {AN \times NC} \right) + {\left( {NC} \right)^2}.................\left( 2 \right)$
Apply Pythagoras Theorem in $\Delta BNA$
$\therefore {\left( {BA} \right)^2} = {\left( {BN} \right)^2} + {\left( {NA} \right)^2}$
From equation 1
$\therefore {\left( {BA} \right)^2} = \left( {AN \times NC} \right) + {\left( {NA} \right)^2}.........\left( 3 \right)$
Add equations 2 and 3
$
{\left( {BC} \right)^2} + {\left( {BA} \right)^2} = \left( {AN \times NC} \right) + {\left( {NC} \right)^2} + \left( {AN \times NC} \right) + {\left( {NA} \right)^2} \\
\therefore {\left( {BC} \right)^2} + {\left( {BA} \right)^2} = {\left( {NC} \right)^2} + {\left( {NA} \right)^2} + 2\left( {AN \times NC} \right) \\
$
In above equation R.H.S is the formula of ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$
$\therefore {\left( {BC} \right)^2} + {\left( {BA} \right)^2} = {\left( {AN + NC} \right)^2}$
From figure $AN + NC = AC$
$\therefore {\left( {BC} \right)^2} + {\left( {BA} \right)^2} = {\left( {AC} \right)^2}$
Which is the property of Pythagoras Theorem.
Where AC is hypotenuse, AB and BC are perpendicular to each other at B.
$\therefore \angle B = {90^0}$
Hence Proved.
Note: - whenever we face such types of problems first draw the pictorial representation of the given problem, then apply Pythagoras Theorem which is stated above, then according to given condition simplify the problem, then we will get the required answer.
Given:
BN is perpendicular to AC
\[\therefore \angle BNC = \angle BNA = 90\]
And it is also given that $B{N^2} = AN \cdot NC............\left( 1 \right)$
Apply Pythagoras Theorem in $\Delta BNC$
$\therefore {\left( {BC} \right)^2} = {\left( {BN} \right)^2} + {\left( {NC} \right)^2}$
From equation 1
${\left( {BC} \right)^2} = \left( {AN \times NC} \right) + {\left( {NC} \right)^2}.................\left( 2 \right)$
Apply Pythagoras Theorem in $\Delta BNA$
$\therefore {\left( {BA} \right)^2} = {\left( {BN} \right)^2} + {\left( {NA} \right)^2}$
From equation 1
$\therefore {\left( {BA} \right)^2} = \left( {AN \times NC} \right) + {\left( {NA} \right)^2}.........\left( 3 \right)$
Add equations 2 and 3
$
{\left( {BC} \right)^2} + {\left( {BA} \right)^2} = \left( {AN \times NC} \right) + {\left( {NC} \right)^2} + \left( {AN \times NC} \right) + {\left( {NA} \right)^2} \\
\therefore {\left( {BC} \right)^2} + {\left( {BA} \right)^2} = {\left( {NC} \right)^2} + {\left( {NA} \right)^2} + 2\left( {AN \times NC} \right) \\
$
In above equation R.H.S is the formula of ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$
$\therefore {\left( {BC} \right)^2} + {\left( {BA} \right)^2} = {\left( {AN + NC} \right)^2}$
From figure $AN + NC = AC$
$\therefore {\left( {BC} \right)^2} + {\left( {BA} \right)^2} = {\left( {AC} \right)^2}$
Which is the property of Pythagoras Theorem.
Where AC is hypotenuse, AB and BC are perpendicular to each other at B.
$\therefore \angle B = {90^0}$
Hence Proved.
Note: - whenever we face such types of problems first draw the pictorial representation of the given problem, then apply Pythagoras Theorem which is stated above, then according to given condition simplify the problem, then we will get the required answer.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 Social Science: Engaging Questions & Answers for Success
Master Class 9 Maths: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
What is the role of NGOs during disaster managemen class 9 social science CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
Which places in India experience sunrise first and class 9 social science CBSE
Describe the 4 stages of the Unification of German class 9 social science CBSE
What is the full form of pH?
Primary function of sweat glands is A Thermoregulation class 9 biology CBSE