Answer
Verified
438.9k+ views
Hint: In a right-angled triangle, as the Pythagoras theorems say, ${h^2} = {p^2} + {b^2}$, where h is the hypotenuse of a right-angle triangle, p is the perpendicular and b is the base.
Complete step-by-step answer:
Consider a right angle triangle, $\vartriangle ABC$
In $\vartriangle ABC$, using Pythagoras theorem, ${h^2} = {p^2} + {b^2}$, where h is the hypotenuse of a right-angle triangle, p is the perpendicular and b is the base.
$A{C^2} = A{B^2} + B{C^2}$
Let AB=x and BC=y
$ \Rightarrow A{C^2} = {x^2} + {y^2}$
AD and CE are the median drawn from A and B respectively.
Now, further applying Pythagoras theorem in $\vartriangle ABD$, we get
$
A{D^2} = {x^2} + {\left( {\dfrac{y}{2}} \right)^2} \\
\Rightarrow AD = \sqrt {{x^2} + {{\left( {\dfrac{y}{2}} \right)}^2}} \\
$
Similarly, In $\vartriangle ECB$,
$
C{E^2} = {y^2} + {(\dfrac{x}{2})^2} \\
\Rightarrow CE = \sqrt {{y^2} + {{(\dfrac{x}{2})}^2}} \\
$
Now, the sum of the squares of the medians is
$
\Rightarrow A{D^2} + C{E^2} = {x^2} + {\left( {\dfrac{y}{2}} \right)^2} + {y^2} + {\left( {\dfrac{x}{2}} \right)^2} \\
\Rightarrow A{D^2} + C{E^2} = \dfrac{5}{4}({x^2} + {y^2}) \\
\Rightarrow 4\left( {A{D^2} + C{E^2}} \right) = 5({x^2} + {y^2}) \\
$
As, we know $A{C^2} = {x^2} + {y^2}$
$ \Rightarrow 4(A{D^2} + C{E^2}) = 5A{C^2}$
Hence, five times the square on the hypotenuse is equal to four times the sum of the squares on the medians drawn from the acute angles
Note: The Median joins the vertex to the midpoint of the opposite side. The properties of the median are as follows:-
The median divides the triangle into two parts of equal area.
The point of concurrency of medians is called Centroid.
The centroid divides the median in the ratio 2:1 with the larger parts toward the vertex.
Complete step-by-step answer:
Consider a right angle triangle, $\vartriangle ABC$
In $\vartriangle ABC$, using Pythagoras theorem, ${h^2} = {p^2} + {b^2}$, where h is the hypotenuse of a right-angle triangle, p is the perpendicular and b is the base.
$A{C^2} = A{B^2} + B{C^2}$
Let AB=x and BC=y
$ \Rightarrow A{C^2} = {x^2} + {y^2}$
AD and CE are the median drawn from A and B respectively.
Now, further applying Pythagoras theorem in $\vartriangle ABD$, we get
$
A{D^2} = {x^2} + {\left( {\dfrac{y}{2}} \right)^2} \\
\Rightarrow AD = \sqrt {{x^2} + {{\left( {\dfrac{y}{2}} \right)}^2}} \\
$
Similarly, In $\vartriangle ECB$,
$
C{E^2} = {y^2} + {(\dfrac{x}{2})^2} \\
\Rightarrow CE = \sqrt {{y^2} + {{(\dfrac{x}{2})}^2}} \\
$
Now, the sum of the squares of the medians is
$
\Rightarrow A{D^2} + C{E^2} = {x^2} + {\left( {\dfrac{y}{2}} \right)^2} + {y^2} + {\left( {\dfrac{x}{2}} \right)^2} \\
\Rightarrow A{D^2} + C{E^2} = \dfrac{5}{4}({x^2} + {y^2}) \\
\Rightarrow 4\left( {A{D^2} + C{E^2}} \right) = 5({x^2} + {y^2}) \\
$
As, we know $A{C^2} = {x^2} + {y^2}$
$ \Rightarrow 4(A{D^2} + C{E^2}) = 5A{C^2}$
Hence, five times the square on the hypotenuse is equal to four times the sum of the squares on the medians drawn from the acute angles
Note: The Median joins the vertex to the midpoint of the opposite side. The properties of the median are as follows:-
The median divides the triangle into two parts of equal area.
The point of concurrency of medians is called Centroid.
The centroid divides the median in the ratio 2:1 with the larger parts toward the vertex.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths