Answer
Verified
492.6k+ views
Hint: Use ${{\log }_{a}}b=\dfrac{1}{{{\log }_{b}}a}$ and basic formula of right angle
triangle.
As we have given that $a,b\text{ and }c$are sides of right – angled triangle with $c$ as
hypotenuse.
By Pythagoras theorem:
${{c}^{2}}={{b}^{2}}+{{a}^{2}}..........\left( i \right)$
The given expression of which we need to find value is:
$\begin{align}
& =\dfrac{{{\log }_{c+b}}a+{{\log }_{c-b}}a}{2{{\log }_{c+b}}a\times {{\log }_{c-b}}a} \\
& =\dfrac{{{\log }_{c+b}}a}{2{{\log }_{c+b}}a\times {{\log }_{c-b}}a}+\dfrac{{{\log
}_{c-b}}a}{2{{\log
}_{c+b}}a\times {{\log }_{c-b}}a} \\
& =\dfrac{1}{2{{\log }_{c-b}}a}+\dfrac{1}{2{{\log }_{c+b}}a} \\
& =\dfrac{1}{2}\left( {{\log }_{a}}\left( c-b \right)+{{\log }_{a}}\left( c+b \right)
\right)\text{
}\because \left( {{\log }_{a}}b=\dfrac{1}{{{\log }_{b}}a} \right) \\
& =\dfrac{1}{2}{{\log }_{a}}\left( c-b \right)\left( c+b \right)\text{ }\because \left(
{{\log }_{x}}a+{{\log }_{x}}b={{\log }_{x}}ab \right) \\
& =\dfrac{1}{2}{{\log }_{a}}{{c}^{2}}-{{b}^{2}}.................\left( ii \right) \\
\end{align}$
From the equation (i)
${{c}^{2}}={{b}^{2}}+{{a}^{2}}$
Hence, equation (ii) will become
$\begin{align}
& =\dfrac{1}{2}lo{{a}_{a}}{{a}^{2}} \\
& =\dfrac{2}{2}{{\log }_{a}}a\text{ }\left( {{\log }_{x}}{{a}^{n}}=n{{\log }_{x}}a \right) \\
& ={{\log }_{a}}a \\
& =1 \\
\end{align}$
Hence, option D is the correct answer.
Note: (i) One need to remember the basic formula between logarithmic functions as used in
the solution for the flexibility which is an important part of the solution with respect to the
calculation point of view.
(ii) One can change the given expression in following way:
$\begin{align}
& \dfrac{{{\log }_{c+b}}a+{{\log }_{c-b}}a}{2{{\log }_{c+b}}a.{{\log }_{c-b}}a} \\
& =\dfrac{\dfrac{{{\log }_{x}}a}{{{\log }_{x}}\left( c+b \right)}+\dfrac{{{\log }_{x}}a}{{{\log
}_{x}}\left(
c-b \right)}}{\dfrac{2{{\log }_{x}}a}{{{\log }_{x}}\left( c+b \right)}\times \dfrac{{{\log
}_{x}}a}{{{\log
}_{x}}\left( c-b \right)}} \\
\end{align}$
As we have formula ${{\log }_{a}}b=\dfrac{{{\log }_{c}}b}{{{\log }_{c}}a}$ with positive $c$.
And simplifying the above expression will also give the answer, but at the end the same
calculation is required. So no need to change the bases of given logarithm functions. We can
observe the expression and need to solve in the same way as done in the solution.
triangle.
As we have given that $a,b\text{ and }c$are sides of right – angled triangle with $c$ as
hypotenuse.
By Pythagoras theorem:
${{c}^{2}}={{b}^{2}}+{{a}^{2}}..........\left( i \right)$
The given expression of which we need to find value is:
$\begin{align}
& =\dfrac{{{\log }_{c+b}}a+{{\log }_{c-b}}a}{2{{\log }_{c+b}}a\times {{\log }_{c-b}}a} \\
& =\dfrac{{{\log }_{c+b}}a}{2{{\log }_{c+b}}a\times {{\log }_{c-b}}a}+\dfrac{{{\log
}_{c-b}}a}{2{{\log
}_{c+b}}a\times {{\log }_{c-b}}a} \\
& =\dfrac{1}{2{{\log }_{c-b}}a}+\dfrac{1}{2{{\log }_{c+b}}a} \\
& =\dfrac{1}{2}\left( {{\log }_{a}}\left( c-b \right)+{{\log }_{a}}\left( c+b \right)
\right)\text{
}\because \left( {{\log }_{a}}b=\dfrac{1}{{{\log }_{b}}a} \right) \\
& =\dfrac{1}{2}{{\log }_{a}}\left( c-b \right)\left( c+b \right)\text{ }\because \left(
{{\log }_{x}}a+{{\log }_{x}}b={{\log }_{x}}ab \right) \\
& =\dfrac{1}{2}{{\log }_{a}}{{c}^{2}}-{{b}^{2}}.................\left( ii \right) \\
\end{align}$
From the equation (i)
${{c}^{2}}={{b}^{2}}+{{a}^{2}}$
Hence, equation (ii) will become
$\begin{align}
& =\dfrac{1}{2}lo{{a}_{a}}{{a}^{2}} \\
& =\dfrac{2}{2}{{\log }_{a}}a\text{ }\left( {{\log }_{x}}{{a}^{n}}=n{{\log }_{x}}a \right) \\
& ={{\log }_{a}}a \\
& =1 \\
\end{align}$
Hence, option D is the correct answer.
Note: (i) One need to remember the basic formula between logarithmic functions as used in
the solution for the flexibility which is an important part of the solution with respect to the
calculation point of view.
(ii) One can change the given expression in following way:
$\begin{align}
& \dfrac{{{\log }_{c+b}}a+{{\log }_{c-b}}a}{2{{\log }_{c+b}}a.{{\log }_{c-b}}a} \\
& =\dfrac{\dfrac{{{\log }_{x}}a}{{{\log }_{x}}\left( c+b \right)}+\dfrac{{{\log }_{x}}a}{{{\log
}_{x}}\left(
c-b \right)}}{\dfrac{2{{\log }_{x}}a}{{{\log }_{x}}\left( c+b \right)}\times \dfrac{{{\log
}_{x}}a}{{{\log
}_{x}}\left( c-b \right)}} \\
\end{align}$
As we have formula ${{\log }_{a}}b=\dfrac{{{\log }_{c}}b}{{{\log }_{c}}a}$ with positive $c$.
And simplifying the above expression will also give the answer, but at the end the same
calculation is required. So no need to change the bases of given logarithm functions. We can
observe the expression and need to solve in the same way as done in the solution.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
A rainbow has circular shape because A The earth is class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE