
In a lot of 500 wristwatches, 50 are found to be defective. One watch is drawn uniformly at random from the box. Find the Probability that the chosen wristwatch is defective.
Answer
611.4k+ views
Hint: Probability of event E = $\dfrac{n(E)}{n(S)}=\dfrac{\text{Favourable cases}}{\text{Total number of cases}}$ where S is called the sample space of the random experiment. Find n (E) and n (S) and use the above formula to find the Probability.
Complete step-by-step answer:
Let E be the event: The watch chosen is defective.
Since there are 50 defective watches the total number of cases favourable to E = 50.
Hence, we have n(E) = 50.
The total number of ways in which we can choose the wrist watches = 500.
Hence, we have n(S) = 500.
Hence, P (E) = $\dfrac{50}{500}=0.1$
Hence the Probability that the chosen wristwatch is defective = 0.1
Note:
[1] It is important to note that drawing uniformly at random is important for the application of the above problem. If the draw is not random, then there is a bias factor in drawing, and the above formula is not applicable. In those cases, we use the conditional probability of an event.
[2] The Probability of an event always lies between 0 and 1
[3] The sum of Probabilities of an event E and its complement E’ is 1.
i.e. $P(E)+P(E')=1$
Hence, we have $P(E')=1-P(E)$. This formula is applied when it is easier to calculate P(E’) instead of P(E).
Complete step-by-step answer:
Let E be the event: The watch chosen is defective.
Since there are 50 defective watches the total number of cases favourable to E = 50.
Hence, we have n(E) = 50.
The total number of ways in which we can choose the wrist watches = 500.
Hence, we have n(S) = 500.
Hence, P (E) = $\dfrac{50}{500}=0.1$
Hence the Probability that the chosen wristwatch is defective = 0.1
Note:
[1] It is important to note that drawing uniformly at random is important for the application of the above problem. If the draw is not random, then there is a bias factor in drawing, and the above formula is not applicable. In those cases, we use the conditional probability of an event.
[2] The Probability of an event always lies between 0 and 1
[3] The sum of Probabilities of an event E and its complement E’ is 1.
i.e. $P(E)+P(E')=1$
Hence, we have $P(E')=1-P(E)$. This formula is applied when it is easier to calculate P(E’) instead of P(E).
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

How is gypsum formed class 10 chemistry CBSE

If the line 3x + 4y 24 0 intersects the xaxis at t-class-10-maths-CBSE

Sugar present in DNA is A Heptose B Hexone C Tetrose class 10 biology CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

What are luminous and Non luminous objects class 10 physics CBSE

