In a \[\Delta ABC,\text{ }{{\cos }^{2}}A+{{\cos }^{2}}B+{{\cos }^{2}}C=1\]. Prove that the triangle is right-angled.
Answer
Verified
505.5k+ views
Hint: Assume a right-angled triangle ABC. Take the cos of each angle of \[\Delta ABC\] and square them separately. Add them to get \[{{\cos }^{2}}A+{{\cos }^{2}}B+{{\cos }^{2}}C=1\]. Since we are already given this result, this means that our assumption is correct. Hence solve the question by this approach.
Complete step-by-step answer:
Here we are given that in \[\Delta ABC,\text{ }{{\cos }^{2}}A+{{\cos }^{2}}B+{{\cos }^{2}}C=1\]. We have to prove that triangle ABC is a right-angled triangle.
Let us assume a \[\Delta ABC\] such that it is right-angled at B.
Let us take \[\angle A=\theta \], we know that in any triangle, the sum of 3 angles is \[{{180}^{o}}\]. So, we get,
\[\angle A+\angle B+\angle C={{180}^{o}}\]
By substituting the value of \[\angle A=\theta \] and \[\angle B={{90}^{o}}\], we get,
\[\theta +{{90}^{o}}+\angle C={{180}^{o}}\]
$\Rightarrow$ \[\angle C={{180}^{o}}-\theta -{{90}^{o}}\]
$\Rightarrow$ \[\angle C={{90}^{o}}-\theta \]
Now, we know that \[\angle A=\theta \]. By taking cos on both sides, of the above equation, we get,
\[\cos \left( A \right)=\cos \theta \]
By squaring both sides of the above equation, we get
$\Rightarrow$ \[{{\cos }^{2}}\left( A \right)={{\cos }^{2}}\theta ....\left( i \right)\]
Now, we also know that \[\angle B={{90}^{o}}\].
By taking cos on both sides of the above equation, we get
$\Rightarrow$ \[\cos B=\cos {{90}^{o}}\]
By squaring both sides of the above equation, we get,
$\Rightarrow$ \[{{\cos }^{2}}B={{\cos }^{2}}{{90}^{o}}\]
We know that \[\cos {{90}^{o}}=0\], so we get,
$\Rightarrow$ \[{{\cos }^{2}}B=0....\left( ii \right)\]
Now, we have found that \[\angle C=\left( {{90}^{o}}-\theta \right)\]
By taking cos on both sides of the above equation, we get,
$\Rightarrow$ \[\cos C=\cos \left( 90-\theta \right)\]
By squaring both sides of the above equation, we get,
$\Rightarrow$ \[{{\cos }^{2}}C={{\cos }^{2}}\left( 90-\theta \right)\]
We know that \[\cos \left( 90-\theta \right)=\sin \theta \]. So, we get,
$\Rightarrow$ \[{{\cos }^{2}}C={{\sin }^{2}}\theta ....\left( iii \right)\]
By adding equation (i), (ii) and (iii), we get,
$\Rightarrow$ \[{{\cos }^{2}}A+{{\cos }^{2}}B+{{\cos }^{2}}C={{\cos }^{2}}\theta +0+{{\sin }^{2}}\theta \]
$\Rightarrow$ \[{{\cos }^{2}}A+{{\cos }^{2}}B+{{\cos }^{2}}C={{\cos }^{2}}\theta +{{\sin }^{2}}\theta \]
We know that \[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\]. So, we get,
$\Rightarrow$ \[{{\cos }^{2}}A+{{\cos }^{2}}B+{{\cos }^{2}}C=1\]
This result is the same as what is given in the question and this is true only for our assumption. That means our assumption was correct. Therefore, we get \[\Delta ABC\] as a right-angled triangle.
Hence proved.
Note: In these types of questions, students are advised to go in the reverse direction. That means, they must assume the desired result and solve accordingly to prove the result already given in the question. If they can finally get the result already given in the question that means their assumption was correct.
Complete step-by-step answer:
Here we are given that in \[\Delta ABC,\text{ }{{\cos }^{2}}A+{{\cos }^{2}}B+{{\cos }^{2}}C=1\]. We have to prove that triangle ABC is a right-angled triangle.
Let us assume a \[\Delta ABC\] such that it is right-angled at B.
Let us take \[\angle A=\theta \], we know that in any triangle, the sum of 3 angles is \[{{180}^{o}}\]. So, we get,
\[\angle A+\angle B+\angle C={{180}^{o}}\]
By substituting the value of \[\angle A=\theta \] and \[\angle B={{90}^{o}}\], we get,
\[\theta +{{90}^{o}}+\angle C={{180}^{o}}\]
$\Rightarrow$ \[\angle C={{180}^{o}}-\theta -{{90}^{o}}\]
$\Rightarrow$ \[\angle C={{90}^{o}}-\theta \]
Now, we know that \[\angle A=\theta \]. By taking cos on both sides, of the above equation, we get,
\[\cos \left( A \right)=\cos \theta \]
By squaring both sides of the above equation, we get
$\Rightarrow$ \[{{\cos }^{2}}\left( A \right)={{\cos }^{2}}\theta ....\left( i \right)\]
Now, we also know that \[\angle B={{90}^{o}}\].
By taking cos on both sides of the above equation, we get
$\Rightarrow$ \[\cos B=\cos {{90}^{o}}\]
By squaring both sides of the above equation, we get,
$\Rightarrow$ \[{{\cos }^{2}}B={{\cos }^{2}}{{90}^{o}}\]
We know that \[\cos {{90}^{o}}=0\], so we get,
$\Rightarrow$ \[{{\cos }^{2}}B=0....\left( ii \right)\]
Now, we have found that \[\angle C=\left( {{90}^{o}}-\theta \right)\]
By taking cos on both sides of the above equation, we get,
$\Rightarrow$ \[\cos C=\cos \left( 90-\theta \right)\]
By squaring both sides of the above equation, we get,
$\Rightarrow$ \[{{\cos }^{2}}C={{\cos }^{2}}\left( 90-\theta \right)\]
We know that \[\cos \left( 90-\theta \right)=\sin \theta \]. So, we get,
$\Rightarrow$ \[{{\cos }^{2}}C={{\sin }^{2}}\theta ....\left( iii \right)\]
By adding equation (i), (ii) and (iii), we get,
$\Rightarrow$ \[{{\cos }^{2}}A+{{\cos }^{2}}B+{{\cos }^{2}}C={{\cos }^{2}}\theta +0+{{\sin }^{2}}\theta \]
$\Rightarrow$ \[{{\cos }^{2}}A+{{\cos }^{2}}B+{{\cos }^{2}}C={{\cos }^{2}}\theta +{{\sin }^{2}}\theta \]
We know that \[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\]. So, we get,
$\Rightarrow$ \[{{\cos }^{2}}A+{{\cos }^{2}}B+{{\cos }^{2}}C=1\]
This result is the same as what is given in the question and this is true only for our assumption. That means our assumption was correct. Therefore, we get \[\Delta ABC\] as a right-angled triangle.
Hence proved.
Note: In these types of questions, students are advised to go in the reverse direction. That means, they must assume the desired result and solve accordingly to prove the result already given in the question. If they can finally get the result already given in the question that means their assumption was correct.
Recently Updated Pages
A uniform rod of length l and mass m is free to rotate class 10 physics CBSE
Solve the following pairs of linear equations by elimination class 10 maths CBSE
What could be the possible ones digits of the square class 10 maths CBSE
Where was the Great Bath found A Harappa B Mohenjodaro class 10 social science CBSE
PQ is a tangent to a circle with centre O at the point class 10 maths CBSE
The measures of two adjacent sides of a parallelogram class 10 maths CBSE
Trending doubts
Imagine that you have the opportunity to interview class 10 english CBSE
Find the area of the minor segment of a circle of radius class 10 maths CBSE
Fill the blanks with proper collective nouns 1 A of class 10 english CBSE
Frogs can live both on land and in water name the adaptations class 10 biology CBSE
Fill in the blank One of the students absent yesterday class 10 english CBSE
Write a letter to the Principal of your school requesting class 10 english CBSE