# In a \[\Delta ABC,\text{ }{{\cos }^{2}}A+{{\cos }^{2}}B+{{\cos }^{2}}C=1\]. Prove that the triangle is right-angled.

Last updated date: 26th Mar 2023

•

Total views: 306.9k

•

Views today: 7.83k

Answer

Verified

306.9k+ views

Hint: Assume a right-angled triangle ABC. Take the cos of each angle of \[\Delta ABC\] and square them separately. Add them to get \[{{\cos }^{2}}A+{{\cos }^{2}}B+{{\cos }^{2}}C=1\]. Since we are already given this result, this means that our assumption is correct. Hence solve the question by this approach.

Complete step-by-step answer:

Here we are given that in \[\Delta ABC,\text{ }{{\cos }^{2}}A+{{\cos }^{2}}B+{{\cos }^{2}}C=1\]. We have to prove that triangle ABC is a right-angled triangle.

Let us assume a \[\Delta ABC\] such that it is right-angled at B.

Let us take \[\angle A=\theta \], we know that in any triangle, the sum of 3 angles is \[{{180}^{o}}\]. So, we get,

\[\angle A+\angle B+\angle C={{180}^{o}}\]

By substituting the value of \[\angle A=\theta \] and \[\angle B={{90}^{o}}\], we get,

\[\theta +{{90}^{o}}+\angle C={{180}^{o}}\]

$\Rightarrow$ \[\angle C={{180}^{o}}-\theta -{{90}^{o}}\]

$\Rightarrow$ \[\angle C={{90}^{o}}-\theta \]

Now, we know that \[\angle A=\theta \]. By taking cos on both sides, of the above equation, we get,

\[\cos \left( A \right)=\cos \theta \]

By squaring both sides of the above equation, we get

$\Rightarrow$ \[{{\cos }^{2}}\left( A \right)={{\cos }^{2}}\theta ....\left( i \right)\]

Now, we also know that \[\angle B={{90}^{o}}\].

By taking cos on both sides of the above equation, we get

$\Rightarrow$ \[\cos B=\cos {{90}^{o}}\]

By squaring both sides of the above equation, we get,

$\Rightarrow$ \[{{\cos }^{2}}B={{\cos }^{2}}{{90}^{o}}\]

We know that \[\cos {{90}^{o}}=0\], so we get,

$\Rightarrow$ \[{{\cos }^{2}}B=0....\left( ii \right)\]

Now, we have found that \[\angle C=\left( {{90}^{o}}-\theta \right)\]

By taking cos on both sides of the above equation, we get,

$\Rightarrow$ \[\cos C=\cos \left( 90-\theta \right)\]

By squaring both sides of the above equation, we get,

$\Rightarrow$ \[{{\cos }^{2}}C={{\cos }^{2}}\left( 90-\theta \right)\]

We know that \[\cos \left( 90-\theta \right)=\sin \theta \]. So, we get,

$\Rightarrow$ \[{{\cos }^{2}}C={{\sin }^{2}}\theta ....\left( iii \right)\]

By adding equation (i), (ii) and (iii), we get,

$\Rightarrow$ \[{{\cos }^{2}}A+{{\cos }^{2}}B+{{\cos }^{2}}C={{\cos }^{2}}\theta +0+{{\sin }^{2}}\theta \]

$\Rightarrow$ \[{{\cos }^{2}}A+{{\cos }^{2}}B+{{\cos }^{2}}C={{\cos }^{2}}\theta +{{\sin }^{2}}\theta \]

We know that \[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\]. So, we get,

$\Rightarrow$ \[{{\cos }^{2}}A+{{\cos }^{2}}B+{{\cos }^{2}}C=1\]

This result is the same as what is given in the question and this is true only for our assumption. That means our assumption was correct. Therefore, we get \[\Delta ABC\] as a right-angled triangle.

Hence proved.

Note: In these types of questions, students are advised to go in the reverse direction. That means, they must assume the desired result and solve accordingly to prove the result already given in the question. If they can finally get the result already given in the question that means their assumption was correct.

Complete step-by-step answer:

Here we are given that in \[\Delta ABC,\text{ }{{\cos }^{2}}A+{{\cos }^{2}}B+{{\cos }^{2}}C=1\]. We have to prove that triangle ABC is a right-angled triangle.

Let us assume a \[\Delta ABC\] such that it is right-angled at B.

Let us take \[\angle A=\theta \], we know that in any triangle, the sum of 3 angles is \[{{180}^{o}}\]. So, we get,

\[\angle A+\angle B+\angle C={{180}^{o}}\]

By substituting the value of \[\angle A=\theta \] and \[\angle B={{90}^{o}}\], we get,

\[\theta +{{90}^{o}}+\angle C={{180}^{o}}\]

$\Rightarrow$ \[\angle C={{180}^{o}}-\theta -{{90}^{o}}\]

$\Rightarrow$ \[\angle C={{90}^{o}}-\theta \]

Now, we know that \[\angle A=\theta \]. By taking cos on both sides, of the above equation, we get,

\[\cos \left( A \right)=\cos \theta \]

By squaring both sides of the above equation, we get

$\Rightarrow$ \[{{\cos }^{2}}\left( A \right)={{\cos }^{2}}\theta ....\left( i \right)\]

Now, we also know that \[\angle B={{90}^{o}}\].

By taking cos on both sides of the above equation, we get

$\Rightarrow$ \[\cos B=\cos {{90}^{o}}\]

By squaring both sides of the above equation, we get,

$\Rightarrow$ \[{{\cos }^{2}}B={{\cos }^{2}}{{90}^{o}}\]

We know that \[\cos {{90}^{o}}=0\], so we get,

$\Rightarrow$ \[{{\cos }^{2}}B=0....\left( ii \right)\]

Now, we have found that \[\angle C=\left( {{90}^{o}}-\theta \right)\]

By taking cos on both sides of the above equation, we get,

$\Rightarrow$ \[\cos C=\cos \left( 90-\theta \right)\]

By squaring both sides of the above equation, we get,

$\Rightarrow$ \[{{\cos }^{2}}C={{\cos }^{2}}\left( 90-\theta \right)\]

We know that \[\cos \left( 90-\theta \right)=\sin \theta \]. So, we get,

$\Rightarrow$ \[{{\cos }^{2}}C={{\sin }^{2}}\theta ....\left( iii \right)\]

By adding equation (i), (ii) and (iii), we get,

$\Rightarrow$ \[{{\cos }^{2}}A+{{\cos }^{2}}B+{{\cos }^{2}}C={{\cos }^{2}}\theta +0+{{\sin }^{2}}\theta \]

$\Rightarrow$ \[{{\cos }^{2}}A+{{\cos }^{2}}B+{{\cos }^{2}}C={{\cos }^{2}}\theta +{{\sin }^{2}}\theta \]

We know that \[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\]. So, we get,

$\Rightarrow$ \[{{\cos }^{2}}A+{{\cos }^{2}}B+{{\cos }^{2}}C=1\]

This result is the same as what is given in the question and this is true only for our assumption. That means our assumption was correct. Therefore, we get \[\Delta ABC\] as a right-angled triangle.

Hence proved.

Note: In these types of questions, students are advised to go in the reverse direction. That means, they must assume the desired result and solve accordingly to prove the result already given in the question. If they can finally get the result already given in the question that means their assumption was correct.

Recently Updated Pages

If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE