
In a class of 48 students the number of girls is three-fifth then the number of boys. The number of boys is
A. 25
B. 30
C. 35
D. 48
Answer
593.7k+ views
Hint: The total class can be written as sum of number of boys and girls or it can be represented as,
\[\text{Number of boys }+\text{ Number of girls }=\text{ 48}\].
Now as we know the number of girls is \[\dfrac{3}{5}\] of the number of boys so substitute it and hence find the number of boys.
Complete step-by-step answer:
In the question we are told that in a class of 48 students the number of girls is three-fifth then the number of boys. So, we have to find a number of boys.
So, we can write according to the question,
\[\text{Number of girls}=\dfrac{3}{5}\times \text{ number of boys}\text{.}\]
As we know that total strength of class which is 48. So we can also tell that the number of boys + number of boys is equal to 48.
Now we know that the number of girls is equal to \[\left( \dfrac{3}{5} \right)\] times the number of boys. So we can use it as,
Number of boy’s \[+\dfrac{3}{5}\] number of boys
\[\Rightarrow \text{number of boys}\left\{ 1+\dfrac{3}{5} \right\}\]
\[\Rightarrow \text{number of boys}\times \dfrac{8}{5}\]
Now we can say that the number of boys \[\times \dfrac{8}{5}\] can be written as 48.
So,
\[\dfrac{8}{5}\times number\text{ of boys=48}\]
we can also write,
\[Number\text{ of boys=48}\times \dfrac{8}{5}\]
Now on simplification we can say that the number of boys is 30.
Hence, the correct option is 'B'.
Note: We can take the number of boys as x. So, the number of girls will be \[\dfrac{3x}{5}\] hence, we can write \[x+\dfrac{3x}{5}=48\] and then solve for x to get the answer.
\[\text{Number of boys }+\text{ Number of girls }=\text{ 48}\].
Now as we know the number of girls is \[\dfrac{3}{5}\] of the number of boys so substitute it and hence find the number of boys.
Complete step-by-step answer:
In the question we are told that in a class of 48 students the number of girls is three-fifth then the number of boys. So, we have to find a number of boys.
So, we can write according to the question,
\[\text{Number of girls}=\dfrac{3}{5}\times \text{ number of boys}\text{.}\]
As we know that total strength of class which is 48. So we can also tell that the number of boys + number of boys is equal to 48.
Now we know that the number of girls is equal to \[\left( \dfrac{3}{5} \right)\] times the number of boys. So we can use it as,
Number of boy’s \[+\dfrac{3}{5}\] number of boys
\[\Rightarrow \text{number of boys}\left\{ 1+\dfrac{3}{5} \right\}\]
\[\Rightarrow \text{number of boys}\times \dfrac{8}{5}\]
Now we can say that the number of boys \[\times \dfrac{8}{5}\] can be written as 48.
So,
\[\dfrac{8}{5}\times number\text{ of boys=48}\]
we can also write,
\[Number\text{ of boys=48}\times \dfrac{8}{5}\]
Now on simplification we can say that the number of boys is 30.
Hence, the correct option is 'B'.
Note: We can take the number of boys as x. So, the number of girls will be \[\dfrac{3x}{5}\] hence, we can write \[x+\dfrac{3x}{5}=48\] and then solve for x to get the answer.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

