In a class of 48 students the number of girls is three-fifth then the number of boys. The number of boys is
A. 25
B. 30
C. 35
D. 48
Answer
335.1k+ views
Hint: The total class can be written as sum of number of boys and girls or it can be represented as,
\[\text{Number of boys }+\text{ Number of girls }=\text{ 48}\].
Now as we know the number of girls is \[\dfrac{3}{5}\] of the number of boys so substitute it and hence find the number of boys.
Complete step-by-step answer:
In the question we are told that in a class of 48 students the number of girls is three-fifth then the number of boys. So, we have to find a number of boys.
So, we can write according to the question,
\[\text{Number of girls}=\dfrac{3}{5}\times \text{ number of boys}\text{.}\]
As we know that total strength of class which is 48. So we can also tell that the number of boys + number of boys is equal to 48.
Now we know that the number of girls is equal to \[\left( \dfrac{3}{5} \right)\] times the number of boys. So we can use it as,
Number of boy’s \[+\dfrac{3}{5}\] number of boys
\[\Rightarrow \text{number of boys}\left\{ 1+\dfrac{3}{5} \right\}\]
\[\Rightarrow \text{number of boys}\times \dfrac{8}{5}\]
Now we can say that the number of boys \[\times \dfrac{8}{5}\] can be written as 48.
So,
\[\dfrac{8}{5}\times number\text{ of boys=48}\]
we can also write,
\[Number\text{ of boys=48}\times \dfrac{8}{5}\]
Now on simplification we can say that the number of boys is 30.
Hence, the correct option is 'B'.
Note: We can take the number of boys as x. So, the number of girls will be \[\dfrac{3x}{5}\] hence, we can write \[x+\dfrac{3x}{5}=48\] and then solve for x to get the answer.
\[\text{Number of boys }+\text{ Number of girls }=\text{ 48}\].
Now as we know the number of girls is \[\dfrac{3}{5}\] of the number of boys so substitute it and hence find the number of boys.
Complete step-by-step answer:
In the question we are told that in a class of 48 students the number of girls is three-fifth then the number of boys. So, we have to find a number of boys.
So, we can write according to the question,
\[\text{Number of girls}=\dfrac{3}{5}\times \text{ number of boys}\text{.}\]
As we know that total strength of class which is 48. So we can also tell that the number of boys + number of boys is equal to 48.
Now we know that the number of girls is equal to \[\left( \dfrac{3}{5} \right)\] times the number of boys. So we can use it as,
Number of boy’s \[+\dfrac{3}{5}\] number of boys
\[\Rightarrow \text{number of boys}\left\{ 1+\dfrac{3}{5} \right\}\]
\[\Rightarrow \text{number of boys}\times \dfrac{8}{5}\]
Now we can say that the number of boys \[\times \dfrac{8}{5}\] can be written as 48.
So,
\[\dfrac{8}{5}\times number\text{ of boys=48}\]
we can also write,
\[Number\text{ of boys=48}\times \dfrac{8}{5}\]
Now on simplification we can say that the number of boys is 30.
Hence, the correct option is 'B'.
Note: We can take the number of boys as x. So, the number of girls will be \[\dfrac{3x}{5}\] hence, we can write \[x+\dfrac{3x}{5}=48\] and then solve for x to get the answer.
Last updated date: 28th Sep 2023
•
Total views: 335.1k
•
Views today: 10.35k
Recently Updated Pages
What do you mean by public facilities

Slogan on Noise Pollution

Paragraph on Friendship

Disadvantages of Advertising

Prepare a Pocket Guide on First Aid for your School

What is the Full Form of ILO, UNICEF and UNESCO

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

What is the IUPAC name of CH3CH CH COOH A 2Butenoic class 11 chemistry CBSE

Drive an expression for the electric field due to an class 12 physics CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

The dimensions of potential gradient are A MLT 3A 1 class 11 physics CBSE

Define electric potential and write down its dimen class 9 physics CBSE

Why is the electric field perpendicular to the equipotential class 12 physics CBSE
