Answer
Verified
465.6k+ views
Hint:Put both the students in different sets according to their favourite sport and then apply the formula of a union of sets, which is given as:
$n\left( {A \cup B} \right) = n\left( A \right) + n\left( B \right) - n\left( {A \cap B} \right)$
Complete step-by-step answer:
It is given in the problem that there are 35 students in the class, out of which 24 likes to play cricket, 5 likes to play both cricket and football.
We have to find the number of students who like to play football.
Assume that the set $A$ defines the students who like to play cricket.
We know that there are 24 such students who like to play cricket, then
$n\left( A \right) = 24$
Also, assume that set $B$ defines the students who like to play football, and we have to find the number of such students,$n\left( B \right)$ who like to play football.
It is given in the problem that the total number of students are $35$, then it is denoted as:
$n(A \cup B) = 35$
We also know that the number of students who like both sports cricket and football are $5$, then it is expressed as:
\[n(A \cap B) = 5\]
Applying the formula of the union of sets which is given as:
$n(A \cup B) = n(A) + n(B) - n(A \cap B)$
Substitute the value of the given data:
$35 = 24 + n(B) - 5$
$35 - 24 + 5 = n(B)$
$n(B) = 16$
Therefore, there are 16 students who like to play football.
Note:The union of two sets is again a set which contains the element which is in one of the two sets and the union of the two sets is expressed as $A \cup B$.
The intersection of two sets is again a set that contains all the elements that are in both the sets and it is expressed as $A \cap B$.
$n\left( {A \cup B} \right) = n\left( A \right) + n\left( B \right) - n\left( {A \cap B} \right)$
Complete step-by-step answer:
It is given in the problem that there are 35 students in the class, out of which 24 likes to play cricket, 5 likes to play both cricket and football.
We have to find the number of students who like to play football.
Assume that the set $A$ defines the students who like to play cricket.
We know that there are 24 such students who like to play cricket, then
$n\left( A \right) = 24$
Also, assume that set $B$ defines the students who like to play football, and we have to find the number of such students,$n\left( B \right)$ who like to play football.
It is given in the problem that the total number of students are $35$, then it is denoted as:
$n(A \cup B) = 35$
We also know that the number of students who like both sports cricket and football are $5$, then it is expressed as:
\[n(A \cap B) = 5\]
Applying the formula of the union of sets which is given as:
$n(A \cup B) = n(A) + n(B) - n(A \cap B)$
Substitute the value of the given data:
$35 = 24 + n(B) - 5$
$35 - 24 + 5 = n(B)$
$n(B) = 16$
Therefore, there are 16 students who like to play football.
Note:The union of two sets is again a set which contains the element which is in one of the two sets and the union of the two sets is expressed as $A \cup B$.
The intersection of two sets is again a set that contains all the elements that are in both the sets and it is expressed as $A \cap B$.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE