# In a certain game A’s skill is to B’s as 3 to 2. Find the chances of A winning 3 games at least out of 5.

Last updated date: 19th Mar 2023

•

Total views: 306.3k

•

Views today: 5.85k

Answer

Verified

306.3k+ views

Hint: In this question it is given that A’s skill is to B’s as 3 to 2, this means that A’s chances of winning a game is $\dfrac{3}{5}$ using the basic concept of probability that ${\text{Probability = }}\dfrac{{{\text{Favorable chances}}}}{{{\text{Total chances}}}}$, similar we can find B’s chances of winning a game. Use this concept along with the binomial theorem of probability to reach the answer.

Complete step-by-step answer:

It is given that in a certain game A’s skill is to B’s as 3 to 2……………….. (1)

Using ${\text{Probability = }}\dfrac{{{\text{Favorable chances}}}}{{{\text{Total chances}}}}$……………….. (2)

Let p be the probability of A winning a game.

So, the chance of winning by A (i.e. probability to win by A) using equation (1) and equation (2)

$ \Rightarrow p = \dfrac{3}{{3 + 2}} = \dfrac{3}{5}$.

Let q be the probability of B winning a game. So the probability to win by B using equation (1) and equation (2)

$ \Rightarrow q = \dfrac{2}{{3 + 2}} = \dfrac{2}{5}$

Now we have to find out the chance of A winning 3 games at least out of 5.

Now we use binomial theorem to calculate the required probability.

$ \Rightarrow {}^n{C_r}{\left( p \right)^r}{\left( q \right)^{n - r}}$

Where, n = number of times the game played.

r = number of times A wins.

p = Probability to win by A.

q = Probability to win by B, or losing probability of A.

Now it is given A win at least 3 games (i.e. A win 3 games or 4 games or 5 games)

So, the required probability (${P_A}$) of winning 3 games at least out of 5 is

${P_A} = {}^5{C_3}{\left( {\dfrac{3}{5}} \right)^3}{\left( {\dfrac{2}{5}} \right)^{5 - 3}} + {}^5{C_4}{\left( {\dfrac{3}{5}} \right)^4}{\left( {\dfrac{2}{5}} \right)^{5 - 4}} + {}^5{C_5}{\left( {\dfrac{3}{5}} \right)^5}{\left( {\dfrac{2}{5}} \right)^{5 - 5}}$…………… (3)

Now as we know ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$

$

\Rightarrow {}^5{C_3} = \dfrac{{5!}}{{3!\left( {5 - 3} \right)!}} = \dfrac{{5.4.3!}}{{3!\left( {2 \times 1} \right)}} = 10 \\

\Rightarrow {}^5{C_4} = \dfrac{{5!}}{{4!\left( {5 - 4} \right)!}} = \dfrac{{5.4!}}{{4!\left( 1 \right)}} = 5 \\

\Rightarrow {}^5{C_5} = \dfrac{{5!}}{{5!\left( {5 - 5} \right)!}} = \dfrac{{5!}}{{5!\left( {0!} \right)}} = \dfrac{{5!}}{{5!\left( 1 \right)}} = 1 \\

$

So substitute these values in equation (3) we have

${P_A} = 10{\left( {\dfrac{3}{5}} \right)^3}{\left( {\dfrac{2}{5}} \right)^2} + 5{\left( {\dfrac{3}{5}} \right)^4}{\left( {\dfrac{2}{5}} \right)^1} + 1{\left( {\dfrac{3}{5}} \right)^5}{\left( {\dfrac{2}{5}} \right)^0}$

Now simplify the above equation we have,

${P_A} = 10\left( {\dfrac{{27}}{{125}}} \right)\left( {\dfrac{4}{{25}}} \right) + 5\left( {\dfrac{{81}}{{625}}} \right)\left( {\dfrac{2}{5}} \right) + 1\left( {\dfrac{{243}}{{3125}}} \right)\left( 1 \right)$

${P_A} = \dfrac{{1080}}{{3125}} + \dfrac{{810}}{{3125}} + \dfrac{{243}}{{3125}}$

Now add all these terms we have,

${P_A} = \dfrac{{2133}}{{3125}}$

So, this is the required probability of A winning 3 games at least out of 5.

So, this is the required answer.

Note: Whenever we face such types of problems the key point is to take out individual probabilities of winning a specific game then whenever we come across words in questions like at least or at most involving probability then we always have to use the binomial probability theorem. This will help you get on the right track to reach the answer.

Complete step-by-step answer:

It is given that in a certain game A’s skill is to B’s as 3 to 2……………….. (1)

Using ${\text{Probability = }}\dfrac{{{\text{Favorable chances}}}}{{{\text{Total chances}}}}$……………….. (2)

Let p be the probability of A winning a game.

So, the chance of winning by A (i.e. probability to win by A) using equation (1) and equation (2)

$ \Rightarrow p = \dfrac{3}{{3 + 2}} = \dfrac{3}{5}$.

Let q be the probability of B winning a game. So the probability to win by B using equation (1) and equation (2)

$ \Rightarrow q = \dfrac{2}{{3 + 2}} = \dfrac{2}{5}$

Now we have to find out the chance of A winning 3 games at least out of 5.

Now we use binomial theorem to calculate the required probability.

$ \Rightarrow {}^n{C_r}{\left( p \right)^r}{\left( q \right)^{n - r}}$

Where, n = number of times the game played.

r = number of times A wins.

p = Probability to win by A.

q = Probability to win by B, or losing probability of A.

Now it is given A win at least 3 games (i.e. A win 3 games or 4 games or 5 games)

So, the required probability (${P_A}$) of winning 3 games at least out of 5 is

${P_A} = {}^5{C_3}{\left( {\dfrac{3}{5}} \right)^3}{\left( {\dfrac{2}{5}} \right)^{5 - 3}} + {}^5{C_4}{\left( {\dfrac{3}{5}} \right)^4}{\left( {\dfrac{2}{5}} \right)^{5 - 4}} + {}^5{C_5}{\left( {\dfrac{3}{5}} \right)^5}{\left( {\dfrac{2}{5}} \right)^{5 - 5}}$…………… (3)

Now as we know ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$

$

\Rightarrow {}^5{C_3} = \dfrac{{5!}}{{3!\left( {5 - 3} \right)!}} = \dfrac{{5.4.3!}}{{3!\left( {2 \times 1} \right)}} = 10 \\

\Rightarrow {}^5{C_4} = \dfrac{{5!}}{{4!\left( {5 - 4} \right)!}} = \dfrac{{5.4!}}{{4!\left( 1 \right)}} = 5 \\

\Rightarrow {}^5{C_5} = \dfrac{{5!}}{{5!\left( {5 - 5} \right)!}} = \dfrac{{5!}}{{5!\left( {0!} \right)}} = \dfrac{{5!}}{{5!\left( 1 \right)}} = 1 \\

$

So substitute these values in equation (3) we have

${P_A} = 10{\left( {\dfrac{3}{5}} \right)^3}{\left( {\dfrac{2}{5}} \right)^2} + 5{\left( {\dfrac{3}{5}} \right)^4}{\left( {\dfrac{2}{5}} \right)^1} + 1{\left( {\dfrac{3}{5}} \right)^5}{\left( {\dfrac{2}{5}} \right)^0}$

Now simplify the above equation we have,

${P_A} = 10\left( {\dfrac{{27}}{{125}}} \right)\left( {\dfrac{4}{{25}}} \right) + 5\left( {\dfrac{{81}}{{625}}} \right)\left( {\dfrac{2}{5}} \right) + 1\left( {\dfrac{{243}}{{3125}}} \right)\left( 1 \right)$

${P_A} = \dfrac{{1080}}{{3125}} + \dfrac{{810}}{{3125}} + \dfrac{{243}}{{3125}}$

Now add all these terms we have,

${P_A} = \dfrac{{2133}}{{3125}}$

So, this is the required probability of A winning 3 games at least out of 5.

So, this is the required answer.

Note: Whenever we face such types of problems the key point is to take out individual probabilities of winning a specific game then whenever we come across words in questions like at least or at most involving probability then we always have to use the binomial probability theorem. This will help you get on the right track to reach the answer.

Recently Updated Pages

If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

The coordinates of the points A and B are a0 and a0 class 11 maths JEE_Main

Trending doubts

Write an application to the principal requesting five class 10 english CBSE

Tropic of Cancer passes through how many states? Name them.

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE

What is per capita income

Change the following sentences into negative and interrogative class 10 english CBSE

A Short Paragraph on our Country India