Answer
Verified
447k+ views
Hint: $6$ employees do their work in $10$ hours. So $6$ employees can do $\dfrac{1}{{10}}$ job in $1$ hour.
$1$ Employee can do $\dfrac{1}{{6 \times 10}}$job in $1$hour.
So in this way you can solve this.
Complete step-by-step answer:
According to the question there is a work which can be done by $6$ employee in $10$ hours.
If the $6$ employee starts working at $11\,a.m.$ and continues till $5\,p.m.$ after that every hour one more employee is added till that work gets finished, so we have to find the time taken when work gets finished.
So it is given that
$6$ employees can complete the work in $10$ hours. So $6$ employees can do $\dfrac{1}{{10}}$ job in $1$ hour. And $1$ Employee can do $\dfrac{1}{{6 \times 10}}$ job in $1$ hour.
There we get the work of $1$ Employee can do $\dfrac{1}{{60}}$ jobs in $1$ hour.
Now, we are told that $6$ employees worked from $11\,a.m.$ to $5\,p.m.$ that means they worked for $6$ hours.
$6$ employees worked for $6$ hours, so total work they did $ = 6 \times 6 \times \dfrac{1}{{60}}$
As we know that $1$ employees do $\dfrac{1}{{60}}$ work in $1$ hour.
So $6$ employees in $6$ hours will do $ = \dfrac{{6 \times 6}}{{60}}$ work $ = \dfrac{6}{{10}}$ work
Now after $5\,p.m.$ one employee is added. So total now $7$ employee worked for $1$ hour that is $5\,p.m.\,\,to\,\,6\,p.m.$
So total work done by $7$ employees in one hour is $\dfrac{7}{{60}}$
So at $6\,p.m.$ the total work completed $ = \dfrac{6}{{10}} + \dfrac{7}{{60}} = \dfrac{{43}}{{60}}$ work.
Still some work is left
So one more employee is added, so total $8$ employees worked for one more hour $ = \dfrac{8}{{60}}$
So total work completed at $7\,p.m.\, = \dfrac{{43}}{{60}} + \dfrac{8}{{60}} = \dfrac{{51}}{{60}}$ work.
Still the work is left, so one more employee is added after $7\,p.m.$
Now the total no. of employees working becomes $9$ for $1$ hour that is $7\,p.m.\,\,\,to\,\,\,8\,p.m.$
So work done by $9$ employees in one hour $ = \dfrac{9}{{60}}$
Now at $8\,p.m.$ total work completed would be $ = \dfrac{{51}}{{60}} + \dfrac{9}{{60}} = \dfrac{{60}}{{60}} = 1$
Hence total work is completed at $8:00\,p.m.$
So option B is correct.
Note: We can use alternative method like
To complete the job $6 \times 10 = 60\,\dfrac{{man}}{{hour}}$
So from $11\,a.m.\,\,to\,\,5\,p.m.\, = 6 \times 6 = 36\,\,\dfrac{{man}}{{hour}}$ is done.
$
5\,p.m.\,\,to\,\,6\,p.m.\, = 7\,\dfrac{{man}}{{hour}} \\
6\,p.m.\,\,to\,\,7\,p.m.\, = 8\,\dfrac{{man}}{{hour}} \\
7\,p.m.\,\,to\,\,8\,p.m.\, = 9\,\dfrac{{man}}{{hour}} \\
$
So at $8\,p.m.\,$, how much work that is $\dfrac{{man}}{{hour}}$ is done $ = 36 + 7 + 8 + 9 = 60\dfrac{{man}}{{hour}}$ which is according to question. So, at $8\,p.m.\,$ the work gets completed.
$1$ Employee can do $\dfrac{1}{{6 \times 10}}$job in $1$hour.
So in this way you can solve this.
Complete step-by-step answer:
According to the question there is a work which can be done by $6$ employee in $10$ hours.
If the $6$ employee starts working at $11\,a.m.$ and continues till $5\,p.m.$ after that every hour one more employee is added till that work gets finished, so we have to find the time taken when work gets finished.
So it is given that
$6$ employees can complete the work in $10$ hours. So $6$ employees can do $\dfrac{1}{{10}}$ job in $1$ hour. And $1$ Employee can do $\dfrac{1}{{6 \times 10}}$ job in $1$ hour.
There we get the work of $1$ Employee can do $\dfrac{1}{{60}}$ jobs in $1$ hour.
Now, we are told that $6$ employees worked from $11\,a.m.$ to $5\,p.m.$ that means they worked for $6$ hours.
$6$ employees worked for $6$ hours, so total work they did $ = 6 \times 6 \times \dfrac{1}{{60}}$
As we know that $1$ employees do $\dfrac{1}{{60}}$ work in $1$ hour.
So $6$ employees in $6$ hours will do $ = \dfrac{{6 \times 6}}{{60}}$ work $ = \dfrac{6}{{10}}$ work
Now after $5\,p.m.$ one employee is added. So total now $7$ employee worked for $1$ hour that is $5\,p.m.\,\,to\,\,6\,p.m.$
So total work done by $7$ employees in one hour is $\dfrac{7}{{60}}$
So at $6\,p.m.$ the total work completed $ = \dfrac{6}{{10}} + \dfrac{7}{{60}} = \dfrac{{43}}{{60}}$ work.
Still some work is left
So one more employee is added, so total $8$ employees worked for one more hour $ = \dfrac{8}{{60}}$
So total work completed at $7\,p.m.\, = \dfrac{{43}}{{60}} + \dfrac{8}{{60}} = \dfrac{{51}}{{60}}$ work.
Still the work is left, so one more employee is added after $7\,p.m.$
Now the total no. of employees working becomes $9$ for $1$ hour that is $7\,p.m.\,\,\,to\,\,\,8\,p.m.$
So work done by $9$ employees in one hour $ = \dfrac{9}{{60}}$
Now at $8\,p.m.$ total work completed would be $ = \dfrac{{51}}{{60}} + \dfrac{9}{{60}} = \dfrac{{60}}{{60}} = 1$
Hence total work is completed at $8:00\,p.m.$
So option B is correct.
Note: We can use alternative method like
To complete the job $6 \times 10 = 60\,\dfrac{{man}}{{hour}}$
So from $11\,a.m.\,\,to\,\,5\,p.m.\, = 6 \times 6 = 36\,\,\dfrac{{man}}{{hour}}$ is done.
$
5\,p.m.\,\,to\,\,6\,p.m.\, = 7\,\dfrac{{man}}{{hour}} \\
6\,p.m.\,\,to\,\,7\,p.m.\, = 8\,\dfrac{{man}}{{hour}} \\
7\,p.m.\,\,to\,\,8\,p.m.\, = 9\,\dfrac{{man}}{{hour}} \\
$
So at $8\,p.m.\,$, how much work that is $\dfrac{{man}}{{hour}}$ is done $ = 36 + 7 + 8 + 9 = 60\dfrac{{man}}{{hour}}$ which is according to question. So, at $8\,p.m.\,$ the work gets completed.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE