
If y(t) is a solution of $\left( {1 + t} \right)\dfrac{{dy}}{{dt}} - ty = 1$ and $y\left( 0 \right) = - 1$, then y(1) equal to
$
(a){\text{ }}\dfrac{{ - 1}}{2} \\
(b){\text{ e + }}\dfrac{1}{2} \\
(c){\text{ e - }}\dfrac{1}{2} \\
(d){\text{ }}\dfrac{1}{2} \\
$
Answer
606.3k+ views
Hint: In this question we have to solve the given differential equation, converting this into standard differential form of $\dfrac{{dy}}{{dx}} + py = q$ and then using the concept of $y\left( {I.F} \right) = \int {\left( {I.F} \right)qdx} $ Where I.F is $ = {e^{\int {pdx} }}$ will help in getting the solution of this differential equation. Then simple substitution of 1 in place of x will help in getting the value of y(1).
Complete step-by-step answer:
The given differential equation is
$\left( {1 + t} \right)\dfrac{{dy}}{{dt}} - ty = 1$
Divide by (1 + t) in above equation we have,
$\dfrac{{dy}}{{dt}} - \dfrac{t}{{\left( {1 + t} \right)}}y = \dfrac{1}{{\left( {1 + t} \right)}}$
Now the general differential equation is $\dfrac{{dy}}{{dx}} + py = q$, the solution of this differential equation is,
$y\left( {I.F} \right) = \int {\left( {I.F} \right)qdx} $ Where I.F is$ = {e^{\int {pdx} }}$.
Now in above equation $p = \dfrac{{ - t}}{{1 + t}}$ and $q = \dfrac{1}{{1 + t}}$.
So, first calculate integrating factor (I.F)
$ \Rightarrow I.F = {e^{\int {\dfrac{{ - t}}{{1 + t}}dx} }}$
$ \Rightarrow I.F = {e^{\int {\left( {\dfrac{1}{{1 + t}} - 1} \right)dx} }}$
Now integrate it as we know $\dfrac{1}{{1 + t}}$ integration is log (1 + t) so, apply this,
$ \Rightarrow I.F = {e^{\log \left( {1 + t} \right) - t}}$
$ \Rightarrow I.F = {e^{\log \left( {1 + t} \right)}}.{e^{ - t}}$
Now as we know ${e^{\log a}} = a$ so, use this property we have,
$ \Rightarrow I.F = \left( {1 + t} \right){e^{ - t}}$
So, the solution of the differential equation is
\[y\left( {I.F} \right) = \int {\left( {I.F} \right)qdt} \]
$
\Rightarrow y\left( {1 + t} \right){e^{ - t}} = \int {\left( {1 + t} \right){e^{ - t}}\dfrac{1}{{1 + t}}dt} \\
\Rightarrow y\left( {1 + t} \right){e^{ - t}} = \int {{e^{ - t}}dt} \\
$
Now as we know integration of $\int {{e^{ - t}}} = \dfrac{{{e^{ - t}}}}{{ - 1}} + c$ so use this in above equation we have
\[ \Rightarrow y\left( {1 + t} \right){e^{ - t}} = \dfrac{{{e^{ - t}}}}{{ - 1}} + c\] (Where c is some arbitrary integration constant)
\[ \Rightarrow y\left( {1 + t} \right){e^{ - t}} = - {e^{ - t}} + c\]……………… (1)
Now it is given that $y\left( 0 \right) = - 1$
So substitute t = 0 and y = -1 in above equation we have,
$
\Rightarrow \left( { - 1} \right)\left( {1 + 0} \right){e^{ - 0}} = - {e^0} + c \\
\Rightarrow - 1 = - 1 + c \\
\Rightarrow c = 0 \\
$
Therefore from equation (1) we have
\[ \Rightarrow y\left( {1 + t} \right){e^{ - t}} = - {e^{ - t}} + 0\]
\[
\Rightarrow y\left( {1 + t} \right){e^{ - t}} = - {e^{ - t}} \\
\Rightarrow y\left( {1 + t} \right) = - 1 \\
\Rightarrow y\left( t \right) = \dfrac{{ - 1}}{{1 + t}} \\
\]
Now we have to find out the value of y(1)
So put t = 1 in above equation we have,
\[ \Rightarrow y\left( 1 \right) = \dfrac{{ - 1}}{{1 + 1}} = \dfrac{{ - 1}}{2}\]
Hence option (a) is correct.
Note: Whenever we face such types of problems the key concept is to convert the differential equation into standard form in order to evaluate the integrating factor. The integration factor will help us obtain the solution required for the given differential equation.
Complete step-by-step answer:
The given differential equation is
$\left( {1 + t} \right)\dfrac{{dy}}{{dt}} - ty = 1$
Divide by (1 + t) in above equation we have,
$\dfrac{{dy}}{{dt}} - \dfrac{t}{{\left( {1 + t} \right)}}y = \dfrac{1}{{\left( {1 + t} \right)}}$
Now the general differential equation is $\dfrac{{dy}}{{dx}} + py = q$, the solution of this differential equation is,
$y\left( {I.F} \right) = \int {\left( {I.F} \right)qdx} $ Where I.F is$ = {e^{\int {pdx} }}$.
Now in above equation $p = \dfrac{{ - t}}{{1 + t}}$ and $q = \dfrac{1}{{1 + t}}$.
So, first calculate integrating factor (I.F)
$ \Rightarrow I.F = {e^{\int {\dfrac{{ - t}}{{1 + t}}dx} }}$
$ \Rightarrow I.F = {e^{\int {\left( {\dfrac{1}{{1 + t}} - 1} \right)dx} }}$
Now integrate it as we know $\dfrac{1}{{1 + t}}$ integration is log (1 + t) so, apply this,
$ \Rightarrow I.F = {e^{\log \left( {1 + t} \right) - t}}$
$ \Rightarrow I.F = {e^{\log \left( {1 + t} \right)}}.{e^{ - t}}$
Now as we know ${e^{\log a}} = a$ so, use this property we have,
$ \Rightarrow I.F = \left( {1 + t} \right){e^{ - t}}$
So, the solution of the differential equation is
\[y\left( {I.F} \right) = \int {\left( {I.F} \right)qdt} \]
$
\Rightarrow y\left( {1 + t} \right){e^{ - t}} = \int {\left( {1 + t} \right){e^{ - t}}\dfrac{1}{{1 + t}}dt} \\
\Rightarrow y\left( {1 + t} \right){e^{ - t}} = \int {{e^{ - t}}dt} \\
$
Now as we know integration of $\int {{e^{ - t}}} = \dfrac{{{e^{ - t}}}}{{ - 1}} + c$ so use this in above equation we have
\[ \Rightarrow y\left( {1 + t} \right){e^{ - t}} = \dfrac{{{e^{ - t}}}}{{ - 1}} + c\] (Where c is some arbitrary integration constant)
\[ \Rightarrow y\left( {1 + t} \right){e^{ - t}} = - {e^{ - t}} + c\]……………… (1)
Now it is given that $y\left( 0 \right) = - 1$
So substitute t = 0 and y = -1 in above equation we have,
$
\Rightarrow \left( { - 1} \right)\left( {1 + 0} \right){e^{ - 0}} = - {e^0} + c \\
\Rightarrow - 1 = - 1 + c \\
\Rightarrow c = 0 \\
$
Therefore from equation (1) we have
\[ \Rightarrow y\left( {1 + t} \right){e^{ - t}} = - {e^{ - t}} + 0\]
\[
\Rightarrow y\left( {1 + t} \right){e^{ - t}} = - {e^{ - t}} \\
\Rightarrow y\left( {1 + t} \right) = - 1 \\
\Rightarrow y\left( t \right) = \dfrac{{ - 1}}{{1 + t}} \\
\]
Now we have to find out the value of y(1)
So put t = 1 in above equation we have,
\[ \Rightarrow y\left( 1 \right) = \dfrac{{ - 1}}{{1 + 1}} = \dfrac{{ - 1}}{2}\]
Hence option (a) is correct.
Note: Whenever we face such types of problems the key concept is to convert the differential equation into standard form in order to evaluate the integrating factor. The integration factor will help us obtain the solution required for the given differential equation.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

