# If y(t) is a solution of $\left( {1 + t} \right)\dfrac{{dy}}{{dt}} - ty = 1$ and $y\left( 0 \right) = - 1$, then y(1) equal to

$

(a){\text{ }}\dfrac{{ - 1}}{2} \\

(b){\text{ e + }}\dfrac{1}{2} \\

(c){\text{ e - }}\dfrac{1}{2} \\

(d){\text{ }}\dfrac{1}{2} \\

$

Last updated date: 29th Mar 2023

•

Total views: 307.8k

•

Views today: 5.85k

Answer

Verified

307.8k+ views

Hint: In this question we have to solve the given differential equation, converting this into standard differential form of $\dfrac{{dy}}{{dx}} + py = q$ and then using the concept of $y\left( {I.F} \right) = \int {\left( {I.F} \right)qdx} $ Where I.F is $ = {e^{\int {pdx} }}$ will help in getting the solution of this differential equation. Then simple substitution of 1 in place of x will help in getting the value of y(1).

Complete step-by-step answer:

The given differential equation is

$\left( {1 + t} \right)\dfrac{{dy}}{{dt}} - ty = 1$

Divide by (1 + t) in above equation we have,

$\dfrac{{dy}}{{dt}} - \dfrac{t}{{\left( {1 + t} \right)}}y = \dfrac{1}{{\left( {1 + t} \right)}}$

Now the general differential equation is $\dfrac{{dy}}{{dx}} + py = q$, the solution of this differential equation is,

$y\left( {I.F} \right) = \int {\left( {I.F} \right)qdx} $ Where I.F is$ = {e^{\int {pdx} }}$.

Now in above equation $p = \dfrac{{ - t}}{{1 + t}}$ and $q = \dfrac{1}{{1 + t}}$.

So, first calculate integrating factor (I.F)

$ \Rightarrow I.F = {e^{\int {\dfrac{{ - t}}{{1 + t}}dx} }}$

$ \Rightarrow I.F = {e^{\int {\left( {\dfrac{1}{{1 + t}} - 1} \right)dx} }}$

Now integrate it as we know $\dfrac{1}{{1 + t}}$ integration is log (1 + t) so, apply this,

$ \Rightarrow I.F = {e^{\log \left( {1 + t} \right) - t}}$

$ \Rightarrow I.F = {e^{\log \left( {1 + t} \right)}}.{e^{ - t}}$

Now as we know ${e^{\log a}} = a$ so, use this property we have,

$ \Rightarrow I.F = \left( {1 + t} \right){e^{ - t}}$

So, the solution of the differential equation is

\[y\left( {I.F} \right) = \int {\left( {I.F} \right)qdt} \]

$

\Rightarrow y\left( {1 + t} \right){e^{ - t}} = \int {\left( {1 + t} \right){e^{ - t}}\dfrac{1}{{1 + t}}dt} \\

\Rightarrow y\left( {1 + t} \right){e^{ - t}} = \int {{e^{ - t}}dt} \\

$

Now as we know integration of $\int {{e^{ - t}}} = \dfrac{{{e^{ - t}}}}{{ - 1}} + c$ so use this in above equation we have

\[ \Rightarrow y\left( {1 + t} \right){e^{ - t}} = \dfrac{{{e^{ - t}}}}{{ - 1}} + c\] (Where c is some arbitrary integration constant)

\[ \Rightarrow y\left( {1 + t} \right){e^{ - t}} = - {e^{ - t}} + c\]……………… (1)

Now it is given that $y\left( 0 \right) = - 1$

So substitute t = 0 and y = -1 in above equation we have,

$

\Rightarrow \left( { - 1} \right)\left( {1 + 0} \right){e^{ - 0}} = - {e^0} + c \\

\Rightarrow - 1 = - 1 + c \\

\Rightarrow c = 0 \\

$

Therefore from equation (1) we have

\[ \Rightarrow y\left( {1 + t} \right){e^{ - t}} = - {e^{ - t}} + 0\]

\[

\Rightarrow y\left( {1 + t} \right){e^{ - t}} = - {e^{ - t}} \\

\Rightarrow y\left( {1 + t} \right) = - 1 \\

\Rightarrow y\left( t \right) = \dfrac{{ - 1}}{{1 + t}} \\

\]

Now we have to find out the value of y(1)

So put t = 1 in above equation we have,

\[ \Rightarrow y\left( 1 \right) = \dfrac{{ - 1}}{{1 + 1}} = \dfrac{{ - 1}}{2}\]

Hence option (a) is correct.

Note: Whenever we face such types of problems the key concept is to convert the differential equation into standard form in order to evaluate the integrating factor. The integration factor will help us obtain the solution required for the given differential equation.

Complete step-by-step answer:

The given differential equation is

$\left( {1 + t} \right)\dfrac{{dy}}{{dt}} - ty = 1$

Divide by (1 + t) in above equation we have,

$\dfrac{{dy}}{{dt}} - \dfrac{t}{{\left( {1 + t} \right)}}y = \dfrac{1}{{\left( {1 + t} \right)}}$

Now the general differential equation is $\dfrac{{dy}}{{dx}} + py = q$, the solution of this differential equation is,

$y\left( {I.F} \right) = \int {\left( {I.F} \right)qdx} $ Where I.F is$ = {e^{\int {pdx} }}$.

Now in above equation $p = \dfrac{{ - t}}{{1 + t}}$ and $q = \dfrac{1}{{1 + t}}$.

So, first calculate integrating factor (I.F)

$ \Rightarrow I.F = {e^{\int {\dfrac{{ - t}}{{1 + t}}dx} }}$

$ \Rightarrow I.F = {e^{\int {\left( {\dfrac{1}{{1 + t}} - 1} \right)dx} }}$

Now integrate it as we know $\dfrac{1}{{1 + t}}$ integration is log (1 + t) so, apply this,

$ \Rightarrow I.F = {e^{\log \left( {1 + t} \right) - t}}$

$ \Rightarrow I.F = {e^{\log \left( {1 + t} \right)}}.{e^{ - t}}$

Now as we know ${e^{\log a}} = a$ so, use this property we have,

$ \Rightarrow I.F = \left( {1 + t} \right){e^{ - t}}$

So, the solution of the differential equation is

\[y\left( {I.F} \right) = \int {\left( {I.F} \right)qdt} \]

$

\Rightarrow y\left( {1 + t} \right){e^{ - t}} = \int {\left( {1 + t} \right){e^{ - t}}\dfrac{1}{{1 + t}}dt} \\

\Rightarrow y\left( {1 + t} \right){e^{ - t}} = \int {{e^{ - t}}dt} \\

$

Now as we know integration of $\int {{e^{ - t}}} = \dfrac{{{e^{ - t}}}}{{ - 1}} + c$ so use this in above equation we have

\[ \Rightarrow y\left( {1 + t} \right){e^{ - t}} = \dfrac{{{e^{ - t}}}}{{ - 1}} + c\] (Where c is some arbitrary integration constant)

\[ \Rightarrow y\left( {1 + t} \right){e^{ - t}} = - {e^{ - t}} + c\]……………… (1)

Now it is given that $y\left( 0 \right) = - 1$

So substitute t = 0 and y = -1 in above equation we have,

$

\Rightarrow \left( { - 1} \right)\left( {1 + 0} \right){e^{ - 0}} = - {e^0} + c \\

\Rightarrow - 1 = - 1 + c \\

\Rightarrow c = 0 \\

$

Therefore from equation (1) we have

\[ \Rightarrow y\left( {1 + t} \right){e^{ - t}} = - {e^{ - t}} + 0\]

\[

\Rightarrow y\left( {1 + t} \right){e^{ - t}} = - {e^{ - t}} \\

\Rightarrow y\left( {1 + t} \right) = - 1 \\

\Rightarrow y\left( t \right) = \dfrac{{ - 1}}{{1 + t}} \\

\]

Now we have to find out the value of y(1)

So put t = 1 in above equation we have,

\[ \Rightarrow y\left( 1 \right) = \dfrac{{ - 1}}{{1 + 1}} = \dfrac{{ - 1}}{2}\]

Hence option (a) is correct.

Note: Whenever we face such types of problems the key concept is to convert the differential equation into standard form in order to evaluate the integrating factor. The integration factor will help us obtain the solution required for the given differential equation.

Recently Updated Pages

If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE