If y(t) is a solution of $\left( {1 + t} \right)\dfrac{{dy}}{{dt}} - ty = 1$ and $y\left( 0 \right) = - 1$, then y(1) equal to
$
(a){\text{ }}\dfrac{{ - 1}}{2} \\
(b){\text{ e + }}\dfrac{1}{2} \\
(c){\text{ e - }}\dfrac{1}{2} \\
(d){\text{ }}\dfrac{1}{2} \\
$
Answer
Verified
507k+ views
Hint: In this question we have to solve the given differential equation, converting this into standard differential form of $\dfrac{{dy}}{{dx}} + py = q$ and then using the concept of $y\left( {I.F} \right) = \int {\left( {I.F} \right)qdx} $ Where I.F is $ = {e^{\int {pdx} }}$ will help in getting the solution of this differential equation. Then simple substitution of 1 in place of x will help in getting the value of y(1).
Complete step-by-step answer:
The given differential equation is
$\left( {1 + t} \right)\dfrac{{dy}}{{dt}} - ty = 1$
Divide by (1 + t) in above equation we have,
$\dfrac{{dy}}{{dt}} - \dfrac{t}{{\left( {1 + t} \right)}}y = \dfrac{1}{{\left( {1 + t} \right)}}$
Now the general differential equation is $\dfrac{{dy}}{{dx}} + py = q$, the solution of this differential equation is,
$y\left( {I.F} \right) = \int {\left( {I.F} \right)qdx} $ Where I.F is$ = {e^{\int {pdx} }}$.
Now in above equation $p = \dfrac{{ - t}}{{1 + t}}$ and $q = \dfrac{1}{{1 + t}}$.
So, first calculate integrating factor (I.F)
$ \Rightarrow I.F = {e^{\int {\dfrac{{ - t}}{{1 + t}}dx} }}$
$ \Rightarrow I.F = {e^{\int {\left( {\dfrac{1}{{1 + t}} - 1} \right)dx} }}$
Now integrate it as we know $\dfrac{1}{{1 + t}}$ integration is log (1 + t) so, apply this,
$ \Rightarrow I.F = {e^{\log \left( {1 + t} \right) - t}}$
$ \Rightarrow I.F = {e^{\log \left( {1 + t} \right)}}.{e^{ - t}}$
Now as we know ${e^{\log a}} = a$ so, use this property we have,
$ \Rightarrow I.F = \left( {1 + t} \right){e^{ - t}}$
So, the solution of the differential equation is
\[y\left( {I.F} \right) = \int {\left( {I.F} \right)qdt} \]
$
\Rightarrow y\left( {1 + t} \right){e^{ - t}} = \int {\left( {1 + t} \right){e^{ - t}}\dfrac{1}{{1 + t}}dt} \\
\Rightarrow y\left( {1 + t} \right){e^{ - t}} = \int {{e^{ - t}}dt} \\
$
Now as we know integration of $\int {{e^{ - t}}} = \dfrac{{{e^{ - t}}}}{{ - 1}} + c$ so use this in above equation we have
\[ \Rightarrow y\left( {1 + t} \right){e^{ - t}} = \dfrac{{{e^{ - t}}}}{{ - 1}} + c\] (Where c is some arbitrary integration constant)
\[ \Rightarrow y\left( {1 + t} \right){e^{ - t}} = - {e^{ - t}} + c\]……………… (1)
Now it is given that $y\left( 0 \right) = - 1$
So substitute t = 0 and y = -1 in above equation we have,
$
\Rightarrow \left( { - 1} \right)\left( {1 + 0} \right){e^{ - 0}} = - {e^0} + c \\
\Rightarrow - 1 = - 1 + c \\
\Rightarrow c = 0 \\
$
Therefore from equation (1) we have
\[ \Rightarrow y\left( {1 + t} \right){e^{ - t}} = - {e^{ - t}} + 0\]
\[
\Rightarrow y\left( {1 + t} \right){e^{ - t}} = - {e^{ - t}} \\
\Rightarrow y\left( {1 + t} \right) = - 1 \\
\Rightarrow y\left( t \right) = \dfrac{{ - 1}}{{1 + t}} \\
\]
Now we have to find out the value of y(1)
So put t = 1 in above equation we have,
\[ \Rightarrow y\left( 1 \right) = \dfrac{{ - 1}}{{1 + 1}} = \dfrac{{ - 1}}{2}\]
Hence option (a) is correct.
Note: Whenever we face such types of problems the key concept is to convert the differential equation into standard form in order to evaluate the integrating factor. The integration factor will help us obtain the solution required for the given differential equation.
Complete step-by-step answer:
The given differential equation is
$\left( {1 + t} \right)\dfrac{{dy}}{{dt}} - ty = 1$
Divide by (1 + t) in above equation we have,
$\dfrac{{dy}}{{dt}} - \dfrac{t}{{\left( {1 + t} \right)}}y = \dfrac{1}{{\left( {1 + t} \right)}}$
Now the general differential equation is $\dfrac{{dy}}{{dx}} + py = q$, the solution of this differential equation is,
$y\left( {I.F} \right) = \int {\left( {I.F} \right)qdx} $ Where I.F is$ = {e^{\int {pdx} }}$.
Now in above equation $p = \dfrac{{ - t}}{{1 + t}}$ and $q = \dfrac{1}{{1 + t}}$.
So, first calculate integrating factor (I.F)
$ \Rightarrow I.F = {e^{\int {\dfrac{{ - t}}{{1 + t}}dx} }}$
$ \Rightarrow I.F = {e^{\int {\left( {\dfrac{1}{{1 + t}} - 1} \right)dx} }}$
Now integrate it as we know $\dfrac{1}{{1 + t}}$ integration is log (1 + t) so, apply this,
$ \Rightarrow I.F = {e^{\log \left( {1 + t} \right) - t}}$
$ \Rightarrow I.F = {e^{\log \left( {1 + t} \right)}}.{e^{ - t}}$
Now as we know ${e^{\log a}} = a$ so, use this property we have,
$ \Rightarrow I.F = \left( {1 + t} \right){e^{ - t}}$
So, the solution of the differential equation is
\[y\left( {I.F} \right) = \int {\left( {I.F} \right)qdt} \]
$
\Rightarrow y\left( {1 + t} \right){e^{ - t}} = \int {\left( {1 + t} \right){e^{ - t}}\dfrac{1}{{1 + t}}dt} \\
\Rightarrow y\left( {1 + t} \right){e^{ - t}} = \int {{e^{ - t}}dt} \\
$
Now as we know integration of $\int {{e^{ - t}}} = \dfrac{{{e^{ - t}}}}{{ - 1}} + c$ so use this in above equation we have
\[ \Rightarrow y\left( {1 + t} \right){e^{ - t}} = \dfrac{{{e^{ - t}}}}{{ - 1}} + c\] (Where c is some arbitrary integration constant)
\[ \Rightarrow y\left( {1 + t} \right){e^{ - t}} = - {e^{ - t}} + c\]……………… (1)
Now it is given that $y\left( 0 \right) = - 1$
So substitute t = 0 and y = -1 in above equation we have,
$
\Rightarrow \left( { - 1} \right)\left( {1 + 0} \right){e^{ - 0}} = - {e^0} + c \\
\Rightarrow - 1 = - 1 + c \\
\Rightarrow c = 0 \\
$
Therefore from equation (1) we have
\[ \Rightarrow y\left( {1 + t} \right){e^{ - t}} = - {e^{ - t}} + 0\]
\[
\Rightarrow y\left( {1 + t} \right){e^{ - t}} = - {e^{ - t}} \\
\Rightarrow y\left( {1 + t} \right) = - 1 \\
\Rightarrow y\left( t \right) = \dfrac{{ - 1}}{{1 + t}} \\
\]
Now we have to find out the value of y(1)
So put t = 1 in above equation we have,
\[ \Rightarrow y\left( 1 \right) = \dfrac{{ - 1}}{{1 + 1}} = \dfrac{{ - 1}}{2}\]
Hence option (a) is correct.
Note: Whenever we face such types of problems the key concept is to convert the differential equation into standard form in order to evaluate the integrating factor. The integration factor will help us obtain the solution required for the given differential equation.
Recently Updated Pages
Class 10 Question and Answer - Your Ultimate Solutions Guide
How to find how many moles are in an ion I am given class 11 chemistry CBSE
Identify how many lines of symmetry drawn are there class 8 maths CBSE
State true or false If two lines intersect and if one class 8 maths CBSE
Tina had 20m 5cm long cloth She cuts 4m 50cm lengt-class-8-maths-CBSE
Which sentence is punctuated correctly A Always ask class 8 english CBSE
Trending doubts
Assertion The planet Neptune appears blue in colour class 10 social science CBSE
The term disaster is derived from language AGreek BArabic class 10 social science CBSE
Imagine that you have the opportunity to interview class 10 english CBSE
Find the area of the minor segment of a circle of radius class 10 maths CBSE
Differentiate between natural and artificial ecosy class 10 biology CBSE
Fill the blanks with proper collective nouns 1 A of class 10 english CBSE