
If y(t) is a solution of $\left( {1 + t} \right)\dfrac{{dy}}{{dt}} - ty = 1$ and $y\left( 0 \right) = - 1$, then y(1) equal to
$
(a){\text{ }}\dfrac{{ - 1}}{2} \\
(b){\text{ e + }}\dfrac{1}{2} \\
(c){\text{ e - }}\dfrac{1}{2} \\
(d){\text{ }}\dfrac{1}{2} \\
$
Answer
620.7k+ views
Hint: In this question we have to solve the given differential equation, converting this into standard differential form of $\dfrac{{dy}}{{dx}} + py = q$ and then using the concept of $y\left( {I.F} \right) = \int {\left( {I.F} \right)qdx} $ Where I.F is $ = {e^{\int {pdx} }}$ will help in getting the solution of this differential equation. Then simple substitution of 1 in place of x will help in getting the value of y(1).
Complete step-by-step answer:
The given differential equation is
$\left( {1 + t} \right)\dfrac{{dy}}{{dt}} - ty = 1$
Divide by (1 + t) in above equation we have,
$\dfrac{{dy}}{{dt}} - \dfrac{t}{{\left( {1 + t} \right)}}y = \dfrac{1}{{\left( {1 + t} \right)}}$
Now the general differential equation is $\dfrac{{dy}}{{dx}} + py = q$, the solution of this differential equation is,
$y\left( {I.F} \right) = \int {\left( {I.F} \right)qdx} $ Where I.F is$ = {e^{\int {pdx} }}$.
Now in above equation $p = \dfrac{{ - t}}{{1 + t}}$ and $q = \dfrac{1}{{1 + t}}$.
So, first calculate integrating factor (I.F)
$ \Rightarrow I.F = {e^{\int {\dfrac{{ - t}}{{1 + t}}dx} }}$
$ \Rightarrow I.F = {e^{\int {\left( {\dfrac{1}{{1 + t}} - 1} \right)dx} }}$
Now integrate it as we know $\dfrac{1}{{1 + t}}$ integration is log (1 + t) so, apply this,
$ \Rightarrow I.F = {e^{\log \left( {1 + t} \right) - t}}$
$ \Rightarrow I.F = {e^{\log \left( {1 + t} \right)}}.{e^{ - t}}$
Now as we know ${e^{\log a}} = a$ so, use this property we have,
$ \Rightarrow I.F = \left( {1 + t} \right){e^{ - t}}$
So, the solution of the differential equation is
\[y\left( {I.F} \right) = \int {\left( {I.F} \right)qdt} \]
$
\Rightarrow y\left( {1 + t} \right){e^{ - t}} = \int {\left( {1 + t} \right){e^{ - t}}\dfrac{1}{{1 + t}}dt} \\
\Rightarrow y\left( {1 + t} \right){e^{ - t}} = \int {{e^{ - t}}dt} \\
$
Now as we know integration of $\int {{e^{ - t}}} = \dfrac{{{e^{ - t}}}}{{ - 1}} + c$ so use this in above equation we have
\[ \Rightarrow y\left( {1 + t} \right){e^{ - t}} = \dfrac{{{e^{ - t}}}}{{ - 1}} + c\] (Where c is some arbitrary integration constant)
\[ \Rightarrow y\left( {1 + t} \right){e^{ - t}} = - {e^{ - t}} + c\]……………… (1)
Now it is given that $y\left( 0 \right) = - 1$
So substitute t = 0 and y = -1 in above equation we have,
$
\Rightarrow \left( { - 1} \right)\left( {1 + 0} \right){e^{ - 0}} = - {e^0} + c \\
\Rightarrow - 1 = - 1 + c \\
\Rightarrow c = 0 \\
$
Therefore from equation (1) we have
\[ \Rightarrow y\left( {1 + t} \right){e^{ - t}} = - {e^{ - t}} + 0\]
\[
\Rightarrow y\left( {1 + t} \right){e^{ - t}} = - {e^{ - t}} \\
\Rightarrow y\left( {1 + t} \right) = - 1 \\
\Rightarrow y\left( t \right) = \dfrac{{ - 1}}{{1 + t}} \\
\]
Now we have to find out the value of y(1)
So put t = 1 in above equation we have,
\[ \Rightarrow y\left( 1 \right) = \dfrac{{ - 1}}{{1 + 1}} = \dfrac{{ - 1}}{2}\]
Hence option (a) is correct.
Note: Whenever we face such types of problems the key concept is to convert the differential equation into standard form in order to evaluate the integrating factor. The integration factor will help us obtain the solution required for the given differential equation.
Complete step-by-step answer:
The given differential equation is
$\left( {1 + t} \right)\dfrac{{dy}}{{dt}} - ty = 1$
Divide by (1 + t) in above equation we have,
$\dfrac{{dy}}{{dt}} - \dfrac{t}{{\left( {1 + t} \right)}}y = \dfrac{1}{{\left( {1 + t} \right)}}$
Now the general differential equation is $\dfrac{{dy}}{{dx}} + py = q$, the solution of this differential equation is,
$y\left( {I.F} \right) = \int {\left( {I.F} \right)qdx} $ Where I.F is$ = {e^{\int {pdx} }}$.
Now in above equation $p = \dfrac{{ - t}}{{1 + t}}$ and $q = \dfrac{1}{{1 + t}}$.
So, first calculate integrating factor (I.F)
$ \Rightarrow I.F = {e^{\int {\dfrac{{ - t}}{{1 + t}}dx} }}$
$ \Rightarrow I.F = {e^{\int {\left( {\dfrac{1}{{1 + t}} - 1} \right)dx} }}$
Now integrate it as we know $\dfrac{1}{{1 + t}}$ integration is log (1 + t) so, apply this,
$ \Rightarrow I.F = {e^{\log \left( {1 + t} \right) - t}}$
$ \Rightarrow I.F = {e^{\log \left( {1 + t} \right)}}.{e^{ - t}}$
Now as we know ${e^{\log a}} = a$ so, use this property we have,
$ \Rightarrow I.F = \left( {1 + t} \right){e^{ - t}}$
So, the solution of the differential equation is
\[y\left( {I.F} \right) = \int {\left( {I.F} \right)qdt} \]
$
\Rightarrow y\left( {1 + t} \right){e^{ - t}} = \int {\left( {1 + t} \right){e^{ - t}}\dfrac{1}{{1 + t}}dt} \\
\Rightarrow y\left( {1 + t} \right){e^{ - t}} = \int {{e^{ - t}}dt} \\
$
Now as we know integration of $\int {{e^{ - t}}} = \dfrac{{{e^{ - t}}}}{{ - 1}} + c$ so use this in above equation we have
\[ \Rightarrow y\left( {1 + t} \right){e^{ - t}} = \dfrac{{{e^{ - t}}}}{{ - 1}} + c\] (Where c is some arbitrary integration constant)
\[ \Rightarrow y\left( {1 + t} \right){e^{ - t}} = - {e^{ - t}} + c\]……………… (1)
Now it is given that $y\left( 0 \right) = - 1$
So substitute t = 0 and y = -1 in above equation we have,
$
\Rightarrow \left( { - 1} \right)\left( {1 + 0} \right){e^{ - 0}} = - {e^0} + c \\
\Rightarrow - 1 = - 1 + c \\
\Rightarrow c = 0 \\
$
Therefore from equation (1) we have
\[ \Rightarrow y\left( {1 + t} \right){e^{ - t}} = - {e^{ - t}} + 0\]
\[
\Rightarrow y\left( {1 + t} \right){e^{ - t}} = - {e^{ - t}} \\
\Rightarrow y\left( {1 + t} \right) = - 1 \\
\Rightarrow y\left( t \right) = \dfrac{{ - 1}}{{1 + t}} \\
\]
Now we have to find out the value of y(1)
So put t = 1 in above equation we have,
\[ \Rightarrow y\left( 1 \right) = \dfrac{{ - 1}}{{1 + 1}} = \dfrac{{ - 1}}{2}\]
Hence option (a) is correct.
Note: Whenever we face such types of problems the key concept is to convert the differential equation into standard form in order to evaluate the integrating factor. The integration factor will help us obtain the solution required for the given differential equation.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

