If y is the mean proportional between x and z, Prove that $xyz{{\left( x+y+z \right)}^{3}}={{\left( xy+yz+zx \right)}^{3}}$.
Answer
Verified
476.7k+ views
Hint: We start solving this question by using the definition of mean proportional in the starting which is, mean proportional of two numbers a and b is $\sqrt{ab}$. Then we apply the basic exponential formulas ${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$ and ${{a}^{m}}\times {{b}^{m}}={{\left( ab \right)}^{m}}$.Using these we convert the given expression to prove the given statement.
Complete step by step answer:
First, let us consider the definition of mean proportional.
Mean Proportional of any two numbers is the square root of the product of the two numbers.
So, from the definition the mean proportional of x and z is $\sqrt{xz}$.
We were given that y is the mean proportional between x and z. So, we can write y as,
$\Rightarrow y=\sqrt{xz}$
Now, let us consider the expression, $xyz{{\left( x+y+z \right)}^{3}}$.
As we know that the value of y is $\sqrt{xz}$. We substitute the value of y in the above expression.
\[\begin{align}
& \Rightarrow xyz{{\left( x+y+z \right)}^{3}}..................\left( 1 \right) \\
& \Rightarrow x\left( \sqrt{xz} \right)z{{\left( x+\sqrt{xz}+z \right)}^{3}} \\
& \Rightarrow xz\left( \sqrt{xz} \right){{\left( x+\sqrt{xz}+z \right)}^{3}} \\
\end{align}\]
Let us use the formula $a={{\left( \sqrt{a} \right)}^{2}}$.
Then we can write $xz$ as ${{\left( \sqrt{xz} \right)}^{2}}$
\[\Rightarrow {{\left( \sqrt{xz} \right)}^{2}}\left( \sqrt{xz} \right){{\left( x+\sqrt{xz}+z \right)}^{3}}.............\left( 2 \right)\]
Now, we use the formula ${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$. So,
$\begin{align}
& \Rightarrow {{\left( \sqrt{xz} \right)}^{2}}\times {{\left( \sqrt{xz} \right)}^{1}}={{\left( \sqrt{xz} \right)}^{2+1}} \\
& \Rightarrow {{\left( \sqrt{xz} \right)}^{2}}\times {{\left( \sqrt{xz} \right)}^{1}}={{\left( \sqrt{xz} \right)}^{3}} \\
\end{align}$
Using this and substituting in equation (2), we get,
\[\Rightarrow {{\left( \sqrt{xz} \right)}^{3}}{{\left( x+\sqrt{xz}+z \right)}^{3}}\]
Now, we use the formula ${{a}^{m}}\times {{b}^{m}}={{\left( ab \right)}^{m}}$. So, using this formula we get,
\[\begin{align}
& \Rightarrow {{\left( x\sqrt{xz}+\sqrt{xz}\sqrt{xz}+z\sqrt{xz} \right)}^{3}} \\
& \Rightarrow {{\left( x\sqrt{xz}+xz+z\sqrt{xz} \right)}^{3}} \\
\end{align}\]
As we know that $y=\sqrt{xz}$,
\[\begin{align}
& \Rightarrow {{\left( x\sqrt{xz}+xz+z\sqrt{xz} \right)}^{3}} \\
& \Rightarrow {{\left( xy+xz+zy \right)}^{3}} \\
& \Rightarrow {{\left( xy+yz+zx \right)}^{3}}.............\left( 3 \right) \\
\end{align}\]
So, by using equations (1) and (3), we can write that
$\Rightarrow xyz{{\left( x+y+z \right)}^{3}}={{\left( xy+yz+zx \right)}^{3}}$
Hence Proved.
Note: There is a chance of making a mistake while using the formulas by taking ${{a}^{m}}\times {{b}^{m}}={{\left( ab \right)}^{m+m}}={{\left( ab \right)}^{2m}}$ confusing it with the formula ${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$. But it is wrong because we should add the powers only when the bases are equal in the product. So, as the bases here are different, we should use ${{a}^{m}}\times {{b}^{m}}={{\left( ab \right)}^{m}}$. So, one should remember the formulas of exponential correctly.
Complete step by step answer:
First, let us consider the definition of mean proportional.
Mean Proportional of any two numbers is the square root of the product of the two numbers.
So, from the definition the mean proportional of x and z is $\sqrt{xz}$.
We were given that y is the mean proportional between x and z. So, we can write y as,
$\Rightarrow y=\sqrt{xz}$
Now, let us consider the expression, $xyz{{\left( x+y+z \right)}^{3}}$.
As we know that the value of y is $\sqrt{xz}$. We substitute the value of y in the above expression.
\[\begin{align}
& \Rightarrow xyz{{\left( x+y+z \right)}^{3}}..................\left( 1 \right) \\
& \Rightarrow x\left( \sqrt{xz} \right)z{{\left( x+\sqrt{xz}+z \right)}^{3}} \\
& \Rightarrow xz\left( \sqrt{xz} \right){{\left( x+\sqrt{xz}+z \right)}^{3}} \\
\end{align}\]
Let us use the formula $a={{\left( \sqrt{a} \right)}^{2}}$.
Then we can write $xz$ as ${{\left( \sqrt{xz} \right)}^{2}}$
\[\Rightarrow {{\left( \sqrt{xz} \right)}^{2}}\left( \sqrt{xz} \right){{\left( x+\sqrt{xz}+z \right)}^{3}}.............\left( 2 \right)\]
Now, we use the formula ${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$. So,
$\begin{align}
& \Rightarrow {{\left( \sqrt{xz} \right)}^{2}}\times {{\left( \sqrt{xz} \right)}^{1}}={{\left( \sqrt{xz} \right)}^{2+1}} \\
& \Rightarrow {{\left( \sqrt{xz} \right)}^{2}}\times {{\left( \sqrt{xz} \right)}^{1}}={{\left( \sqrt{xz} \right)}^{3}} \\
\end{align}$
Using this and substituting in equation (2), we get,
\[\Rightarrow {{\left( \sqrt{xz} \right)}^{3}}{{\left( x+\sqrt{xz}+z \right)}^{3}}\]
Now, we use the formula ${{a}^{m}}\times {{b}^{m}}={{\left( ab \right)}^{m}}$. So, using this formula we get,
\[\begin{align}
& \Rightarrow {{\left( x\sqrt{xz}+\sqrt{xz}\sqrt{xz}+z\sqrt{xz} \right)}^{3}} \\
& \Rightarrow {{\left( x\sqrt{xz}+xz+z\sqrt{xz} \right)}^{3}} \\
\end{align}\]
As we know that $y=\sqrt{xz}$,
\[\begin{align}
& \Rightarrow {{\left( x\sqrt{xz}+xz+z\sqrt{xz} \right)}^{3}} \\
& \Rightarrow {{\left( xy+xz+zy \right)}^{3}} \\
& \Rightarrow {{\left( xy+yz+zx \right)}^{3}}.............\left( 3 \right) \\
\end{align}\]
So, by using equations (1) and (3), we can write that
$\Rightarrow xyz{{\left( x+y+z \right)}^{3}}={{\left( xy+yz+zx \right)}^{3}}$
Hence Proved.
Note: There is a chance of making a mistake while using the formulas by taking ${{a}^{m}}\times {{b}^{m}}={{\left( ab \right)}^{m+m}}={{\left( ab \right)}^{2m}}$ confusing it with the formula ${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$. But it is wrong because we should add the powers only when the bases are equal in the product. So, as the bases here are different, we should use ${{a}^{m}}\times {{b}^{m}}={{\left( ab \right)}^{m}}$. So, one should remember the formulas of exponential correctly.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 Social Science: Engaging Questions & Answers for Success
Master Class 9 Maths: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is the role of NGOs during disaster managemen class 9 social science CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The highest mountain peak in India is A Kanchenjunga class 9 social science CBSE
What is pollution? How many types of pollution? Define it