Answer
Verified
407.7k+ views
Hint: First try to get an equation in terms of variables and constant by removing the proportionality. Substitute the variables by the given values to get the value of the constant. Then again substitute the value of the constant in the base equation to get the required expression.
Complete step by step answer:
According to the question; y is directly proportional to the square of x
\[\Rightarrow y\propto {{x}^{2}}\]
\[\Rightarrow y=k{{x}^{2}}\](Where k is the proportionality constant)
Therefore, y would be in the form \[y=k{{x}^{2}}\] (where k is a constant)
Now the given values are x=4 and y=25.
Putting these values in the above equation we get,
$\begin{align}
& 25=k\times {{4}^{2}} \\
& \Rightarrow 25=16k \\
\end{align}$
The value of the constant k obtained from the equation is $\dfrac{25}{16}$
Now we have to find an expression of y in terms of x.
This can be expressed by substituting the value of the constant k in the base equation \[y=k{{x}^{2}}\]
Putting the value of constant $k=\dfrac{25}{16}$(in fraction form);
We get the expression $y=\dfrac{25}{16}{{x}^{2}}$.
Note: A proportionality constant ‘k’ should be added after removing the proportionality sign. The proportionality constant ‘k’ can be obtained by putting the values of ‘x’ and ‘y’ in the proportionality equation.
Complete step by step answer:
According to the question; y is directly proportional to the square of x
\[\Rightarrow y\propto {{x}^{2}}\]
\[\Rightarrow y=k{{x}^{2}}\](Where k is the proportionality constant)
Therefore, y would be in the form \[y=k{{x}^{2}}\] (where k is a constant)
Now the given values are x=4 and y=25.
Putting these values in the above equation we get,
$\begin{align}
& 25=k\times {{4}^{2}} \\
& \Rightarrow 25=16k \\
\end{align}$
The value of the constant k obtained from the equation is $\dfrac{25}{16}$
Now we have to find an expression of y in terms of x.
This can be expressed by substituting the value of the constant k in the base equation \[y=k{{x}^{2}}\]
Putting the value of constant $k=\dfrac{25}{16}$(in fraction form);
We get the expression $y=\dfrac{25}{16}{{x}^{2}}$.
Note: A proportionality constant ‘k’ should be added after removing the proportionality sign. The proportionality constant ‘k’ can be obtained by putting the values of ‘x’ and ‘y’ in the proportionality equation.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The polyarch xylem is found in case of a Monocot leaf class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Change the following sentences into negative and interrogative class 10 english CBSE
Casparian strips are present in of the root A Epiblema class 12 biology CBSE