
If $Y = {(cosx)^{\log x}} + {(logx)^x}$ then, $\dfrac{{dy}}{{dx}} = {(cosx)^{\log x}}\left[ {logx( - tanx) + \dfrac{1}{x}logcosx} \right] + {(logx)^x}\left[ {\dfrac{1}{{\log x}} + log(logx)} \right]$
State true or false.
Answer
534k+ views
Hint: Here, we will divide the question into two parts. The first part is ${(cosx)^{\log x}}$ and the second part is ${(logx)^x}$. Let us assume the first part as u, and the second part as v. Now, differentiate those parts with respect to x. That is we will find $\dfrac{{du}}{{dx}}$ and $\dfrac{{dv}}{{dx}}$ . Then to find $\dfrac{{dy}}{{dx}}$, add $\dfrac{{du}}{{dx}}$ and $\dfrac{{dv}}{{dx}}$.
Here, we will use the following formulas:
$\log \left( {{x^y}} \right) = y\log x$
$\dfrac{d}{{dx}}\log u = \dfrac{1}{u}\dfrac{{du}}{{dx}}$
$\dfrac{d}{{dx}}\log x = \dfrac{1}{x}$
$\dfrac{d}{{dx}}\log \cos x = \dfrac{1}{{\cos x}}\dfrac{d}{{dx}}\cos x$
$\dfrac{d}{{dx}}\cos x = - \sin x$
$\dfrac{d}{{dx}}x = 1$
Complete step-by-step solution:
In this question, the given expression is
$ \Rightarrow Y = {(cosx)^{\log x}} + {(logx)^x}$
Now, we will divide the question into two parts.
The first part is ${(cosx)^{\log x}}$.
Let us assume the first part as u.
Therefore,
$ \Rightarrow u = {(cosx)^{\log x}}$
Taking log both sides.
$ \Rightarrow \log u = \log \left[ {{{(cosx)}^{\log x}}} \right]$
We will use the formula $\log \left( {{x^y}} \right) = y\log x$ on the right-hand side.
$ \Rightarrow \log u = \log x(\log cosx)$
Now, differentiate both sides with respect to x.
$ \Rightarrow \dfrac{d}{{dx}}\log u = \dfrac{d}{{dx}}\log x(\log cosx)$
Let us apply the formula $\dfrac{d}{{dx}}\log u = \dfrac{1}{u}\dfrac{{du}}{{dx}}$ on the left-hand side and $\dfrac{d}{{dx}}\log x(\log cosx) = \log cosx\dfrac{d}{{dx}}\log x + \log x\dfrac{d}{{dx}}(\log cosx)$ on the right-hand side.
Therefore,
$ \Rightarrow \dfrac{1}{u}\dfrac{{du}}{{dx}} = \log cosx\dfrac{d}{{dx}}\log x + \log x\dfrac{d}{{dx}}(\log cosx)$
Here, apply the formulas $\dfrac{d}{{dx}}\log x = \dfrac{1}{x}$, and $\dfrac{d}{{dx}}\log \cos x = \dfrac{1}{{\cos x}}\dfrac{d}{{dx}}\cos x$.
$ \Rightarrow \dfrac{1}{u}\dfrac{{du}}{{dx}} = \log cosx\left( {\dfrac{1}{x}} \right) + \log x\left( {\dfrac{1}{{\cos x}}} \right)\dfrac{d}{{dx}}cosx$
Now, as we already know that $\dfrac{d}{{dx}}\cos x = - \sin x$
$ \Rightarrow \dfrac{1}{u}\dfrac{{du}}{{dx}} = \dfrac{{\log cosx}}{x} + \dfrac{{\log x}}{{\cos x}}\left( { - \sin x} \right)$
We know that $\dfrac{{\sin x}}{{\cos x}} = \tan x$.
Therefore,
$ \Rightarrow \dfrac{1}{u}\dfrac{{du}}{{dx}} = \dfrac{{\log cosx}}{x} + \log x\left( { - \tan x} \right)$
Now, multiply both sides by u.
$ \Rightarrow \dfrac{{du}}{{dx}} = u\left( {\dfrac{{\log cosx}}{x} + \log x\left( { - \tan x} \right)} \right)$
Let us substitute the value of u.$u = {(cosx)^{\log x}}$
So,
$ \Rightarrow \dfrac{{du}}{{dx}} = {(cosx)^{\log x}}\left( {\dfrac{{\log cosx}}{x} + \log x\left( { - \tan x} \right)} \right)$
We can also write the above term as below.
$ \Rightarrow \dfrac{{du}}{{dx}} = {(cosx)^{\log x}}\left( {\log x\left( { - \tan x} \right) + \dfrac{1}{x}\log cosx} \right)$..................(1)
Now, let us take the second part.
The second part is ${(logx)^x}$.
Let us assume the first part as v.
Therefore,
$ \Rightarrow v = {(logx)^x}$
Taking log both sides.
$ \Rightarrow \log v = \log \left[ {{{(logx)}^x}} \right]$
We will use the formula $\log \left( {{x^y}} \right) = y\log x$ on the right-hand side.
$ \Rightarrow \log v = x\log (\log x)$
Now, differentiate both sides with respect to x.
$ \Rightarrow \dfrac{d}{{dx}}\log v = \dfrac{d}{{dx}}\left( {x\log (\log x)} \right)$
Let us apply the formula $\dfrac{d}{{dx}}\log v = \dfrac{1}{v}\dfrac{{dv}}{{dx}}$ on the left-hand side and $\dfrac{d}{{dx}}\left( {x\log (\log x)} \right) = \log (\log x)\dfrac{d}{{dx}}x + x\dfrac{d}{{dx}}(\log \left( {\log x} \right))$ on the right-hand side.
Therefore,
$ \Rightarrow \dfrac{1}{v}\dfrac{{dv}}{{dx}} = \log (\log x)\dfrac{d}{{dx}}x + x\dfrac{d}{{dx}}(\log \left( {\log x} \right))$
Here, $\dfrac{d}{{dx}}x = 1$ and $\dfrac{d}{{dx}}(\log \left( {\log x} \right)) = \dfrac{1}{{\log x}}\dfrac{d}{{dx}}\log x$
$ \Rightarrow \dfrac{1}{v}\dfrac{{dv}}{{dx}} = \log (\log x)\left( 1 \right) + x\dfrac{1}{{\log x}}\dfrac{d}{{dx}}\log x$
Apply the formula $\dfrac{d}{{dx}}\log x = \dfrac{1}{x}$
So,$ \Rightarrow \dfrac{1}{v}\dfrac{{dv}}{{dx}} = \log (\log x) + x\dfrac{1}{{\log x\left( x \right)}}$
That is equal to,
$ \Rightarrow \dfrac{1}{v}\dfrac{{dv}}{{dx}} = \log (\log x) + \dfrac{1}{{\log x}}$
Let us multiply both sides by v.
$ \Rightarrow \dfrac{{dv}}{{dx}} = v\left( {\log (\log x) + \dfrac{1}{{\log x}}} \right)$
Here, substitute$v = {(logx)^x}$.
$ \Rightarrow \dfrac{{dv}}{{dx}} = {(logx)^x}\left( {\log (\log x) + \dfrac{1}{{\log x}}} \right)$
We can also write the above equation.
$ \Rightarrow \dfrac{{dv}}{{dx}} = {(logx)^x}\left( {\dfrac{1}{{\log x}} + \log (\log x)} \right)$................(2)
Now,
$\dfrac{{dy}}{{dx}} = \dfrac{{du}}{{dx}} + \dfrac{{dv}}{{dx}}$
Substitute the values from equations (1) and (2).
$ \Rightarrow \dfrac{{dy}}{{dx}} = {(cosx)^{\log x}}\left( {\log x\left( { - \tan x} \right) + \dfrac{1}{x}\log cosx} \right) + {(logx)^x}\left( {\log (\log x) + \dfrac{1}{{\log x}}} \right)$
Hence, the answer is true.
Note: Logarithmic differentiation: It is a method to find the derivatives of some complicated functions, using logarithms. There are cases in which differentiating the logarithm of a given function is simpler as compared to differentiating the function itself. By proper usage of properties of logarithms and chain rule finding, the derivatives become easy.
Here, we will use the following formulas:
$\log \left( {{x^y}} \right) = y\log x$
$\dfrac{d}{{dx}}\log u = \dfrac{1}{u}\dfrac{{du}}{{dx}}$
$\dfrac{d}{{dx}}\log x = \dfrac{1}{x}$
$\dfrac{d}{{dx}}\log \cos x = \dfrac{1}{{\cos x}}\dfrac{d}{{dx}}\cos x$
$\dfrac{d}{{dx}}\cos x = - \sin x$
$\dfrac{d}{{dx}}x = 1$
Complete step-by-step solution:
In this question, the given expression is
$ \Rightarrow Y = {(cosx)^{\log x}} + {(logx)^x}$
Now, we will divide the question into two parts.
The first part is ${(cosx)^{\log x}}$.
Let us assume the first part as u.
Therefore,
$ \Rightarrow u = {(cosx)^{\log x}}$
Taking log both sides.
$ \Rightarrow \log u = \log \left[ {{{(cosx)}^{\log x}}} \right]$
We will use the formula $\log \left( {{x^y}} \right) = y\log x$ on the right-hand side.
$ \Rightarrow \log u = \log x(\log cosx)$
Now, differentiate both sides with respect to x.
$ \Rightarrow \dfrac{d}{{dx}}\log u = \dfrac{d}{{dx}}\log x(\log cosx)$
Let us apply the formula $\dfrac{d}{{dx}}\log u = \dfrac{1}{u}\dfrac{{du}}{{dx}}$ on the left-hand side and $\dfrac{d}{{dx}}\log x(\log cosx) = \log cosx\dfrac{d}{{dx}}\log x + \log x\dfrac{d}{{dx}}(\log cosx)$ on the right-hand side.
Therefore,
$ \Rightarrow \dfrac{1}{u}\dfrac{{du}}{{dx}} = \log cosx\dfrac{d}{{dx}}\log x + \log x\dfrac{d}{{dx}}(\log cosx)$
Here, apply the formulas $\dfrac{d}{{dx}}\log x = \dfrac{1}{x}$, and $\dfrac{d}{{dx}}\log \cos x = \dfrac{1}{{\cos x}}\dfrac{d}{{dx}}\cos x$.
$ \Rightarrow \dfrac{1}{u}\dfrac{{du}}{{dx}} = \log cosx\left( {\dfrac{1}{x}} \right) + \log x\left( {\dfrac{1}{{\cos x}}} \right)\dfrac{d}{{dx}}cosx$
Now, as we already know that $\dfrac{d}{{dx}}\cos x = - \sin x$
$ \Rightarrow \dfrac{1}{u}\dfrac{{du}}{{dx}} = \dfrac{{\log cosx}}{x} + \dfrac{{\log x}}{{\cos x}}\left( { - \sin x} \right)$
We know that $\dfrac{{\sin x}}{{\cos x}} = \tan x$.
Therefore,
$ \Rightarrow \dfrac{1}{u}\dfrac{{du}}{{dx}} = \dfrac{{\log cosx}}{x} + \log x\left( { - \tan x} \right)$
Now, multiply both sides by u.
$ \Rightarrow \dfrac{{du}}{{dx}} = u\left( {\dfrac{{\log cosx}}{x} + \log x\left( { - \tan x} \right)} \right)$
Let us substitute the value of u.$u = {(cosx)^{\log x}}$
So,
$ \Rightarrow \dfrac{{du}}{{dx}} = {(cosx)^{\log x}}\left( {\dfrac{{\log cosx}}{x} + \log x\left( { - \tan x} \right)} \right)$
We can also write the above term as below.
$ \Rightarrow \dfrac{{du}}{{dx}} = {(cosx)^{\log x}}\left( {\log x\left( { - \tan x} \right) + \dfrac{1}{x}\log cosx} \right)$..................(1)
Now, let us take the second part.
The second part is ${(logx)^x}$.
Let us assume the first part as v.
Therefore,
$ \Rightarrow v = {(logx)^x}$
Taking log both sides.
$ \Rightarrow \log v = \log \left[ {{{(logx)}^x}} \right]$
We will use the formula $\log \left( {{x^y}} \right) = y\log x$ on the right-hand side.
$ \Rightarrow \log v = x\log (\log x)$
Now, differentiate both sides with respect to x.
$ \Rightarrow \dfrac{d}{{dx}}\log v = \dfrac{d}{{dx}}\left( {x\log (\log x)} \right)$
Let us apply the formula $\dfrac{d}{{dx}}\log v = \dfrac{1}{v}\dfrac{{dv}}{{dx}}$ on the left-hand side and $\dfrac{d}{{dx}}\left( {x\log (\log x)} \right) = \log (\log x)\dfrac{d}{{dx}}x + x\dfrac{d}{{dx}}(\log \left( {\log x} \right))$ on the right-hand side.
Therefore,
$ \Rightarrow \dfrac{1}{v}\dfrac{{dv}}{{dx}} = \log (\log x)\dfrac{d}{{dx}}x + x\dfrac{d}{{dx}}(\log \left( {\log x} \right))$
Here, $\dfrac{d}{{dx}}x = 1$ and $\dfrac{d}{{dx}}(\log \left( {\log x} \right)) = \dfrac{1}{{\log x}}\dfrac{d}{{dx}}\log x$
$ \Rightarrow \dfrac{1}{v}\dfrac{{dv}}{{dx}} = \log (\log x)\left( 1 \right) + x\dfrac{1}{{\log x}}\dfrac{d}{{dx}}\log x$
Apply the formula $\dfrac{d}{{dx}}\log x = \dfrac{1}{x}$
So,$ \Rightarrow \dfrac{1}{v}\dfrac{{dv}}{{dx}} = \log (\log x) + x\dfrac{1}{{\log x\left( x \right)}}$
That is equal to,
$ \Rightarrow \dfrac{1}{v}\dfrac{{dv}}{{dx}} = \log (\log x) + \dfrac{1}{{\log x}}$
Let us multiply both sides by v.
$ \Rightarrow \dfrac{{dv}}{{dx}} = v\left( {\log (\log x) + \dfrac{1}{{\log x}}} \right)$
Here, substitute$v = {(logx)^x}$.
$ \Rightarrow \dfrac{{dv}}{{dx}} = {(logx)^x}\left( {\log (\log x) + \dfrac{1}{{\log x}}} \right)$
We can also write the above equation.
$ \Rightarrow \dfrac{{dv}}{{dx}} = {(logx)^x}\left( {\dfrac{1}{{\log x}} + \log (\log x)} \right)$................(2)
Now,
$\dfrac{{dy}}{{dx}} = \dfrac{{du}}{{dx}} + \dfrac{{dv}}{{dx}}$
Substitute the values from equations (1) and (2).
$ \Rightarrow \dfrac{{dy}}{{dx}} = {(cosx)^{\log x}}\left( {\log x\left( { - \tan x} \right) + \dfrac{1}{x}\log cosx} \right) + {(logx)^x}\left( {\log (\log x) + \dfrac{1}{{\log x}}} \right)$
Hence, the answer is true.
Note: Logarithmic differentiation: It is a method to find the derivatives of some complicated functions, using logarithms. There are cases in which differentiating the logarithm of a given function is simpler as compared to differentiating the function itself. By proper usage of properties of logarithms and chain rule finding, the derivatives become easy.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Write a letter to the principal requesting him to grant class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

10 examples of evaporation in daily life with explanations

