
If $Y = {(cosx)^{\log x}} + {(logx)^x}$ then, $\dfrac{{dy}}{{dx}} = {(cosx)^{\log x}}\left[ {logx( - tanx) + \dfrac{1}{x}logcosx} \right] + {(logx)^x}\left[ {\dfrac{1}{{\log x}} + log(logx)} \right]$
State true or false.
Answer
462.6k+ views
Hint: Here, we will divide the question into two parts. The first part is ${(cosx)^{\log x}}$ and the second part is ${(logx)^x}$. Let us assume the first part as u, and the second part as v. Now, differentiate those parts with respect to x. That is we will find $\dfrac{{du}}{{dx}}$ and $\dfrac{{dv}}{{dx}}$ . Then to find $\dfrac{{dy}}{{dx}}$, add $\dfrac{{du}}{{dx}}$ and $\dfrac{{dv}}{{dx}}$.
Here, we will use the following formulas:
$\log \left( {{x^y}} \right) = y\log x$
$\dfrac{d}{{dx}}\log u = \dfrac{1}{u}\dfrac{{du}}{{dx}}$
$\dfrac{d}{{dx}}\log x = \dfrac{1}{x}$
$\dfrac{d}{{dx}}\log \cos x = \dfrac{1}{{\cos x}}\dfrac{d}{{dx}}\cos x$
$\dfrac{d}{{dx}}\cos x = - \sin x$
$\dfrac{d}{{dx}}x = 1$
Complete step-by-step solution:
In this question, the given expression is
$ \Rightarrow Y = {(cosx)^{\log x}} + {(logx)^x}$
Now, we will divide the question into two parts.
The first part is ${(cosx)^{\log x}}$.
Let us assume the first part as u.
Therefore,
$ \Rightarrow u = {(cosx)^{\log x}}$
Taking log both sides.
$ \Rightarrow \log u = \log \left[ {{{(cosx)}^{\log x}}} \right]$
We will use the formula $\log \left( {{x^y}} \right) = y\log x$ on the right-hand side.
$ \Rightarrow \log u = \log x(\log cosx)$
Now, differentiate both sides with respect to x.
$ \Rightarrow \dfrac{d}{{dx}}\log u = \dfrac{d}{{dx}}\log x(\log cosx)$
Let us apply the formula $\dfrac{d}{{dx}}\log u = \dfrac{1}{u}\dfrac{{du}}{{dx}}$ on the left-hand side and $\dfrac{d}{{dx}}\log x(\log cosx) = \log cosx\dfrac{d}{{dx}}\log x + \log x\dfrac{d}{{dx}}(\log cosx)$ on the right-hand side.
Therefore,
$ \Rightarrow \dfrac{1}{u}\dfrac{{du}}{{dx}} = \log cosx\dfrac{d}{{dx}}\log x + \log x\dfrac{d}{{dx}}(\log cosx)$
Here, apply the formulas $\dfrac{d}{{dx}}\log x = \dfrac{1}{x}$, and $\dfrac{d}{{dx}}\log \cos x = \dfrac{1}{{\cos x}}\dfrac{d}{{dx}}\cos x$.
$ \Rightarrow \dfrac{1}{u}\dfrac{{du}}{{dx}} = \log cosx\left( {\dfrac{1}{x}} \right) + \log x\left( {\dfrac{1}{{\cos x}}} \right)\dfrac{d}{{dx}}cosx$
Now, as we already know that $\dfrac{d}{{dx}}\cos x = - \sin x$
$ \Rightarrow \dfrac{1}{u}\dfrac{{du}}{{dx}} = \dfrac{{\log cosx}}{x} + \dfrac{{\log x}}{{\cos x}}\left( { - \sin x} \right)$
We know that $\dfrac{{\sin x}}{{\cos x}} = \tan x$.
Therefore,
$ \Rightarrow \dfrac{1}{u}\dfrac{{du}}{{dx}} = \dfrac{{\log cosx}}{x} + \log x\left( { - \tan x} \right)$
Now, multiply both sides by u.
$ \Rightarrow \dfrac{{du}}{{dx}} = u\left( {\dfrac{{\log cosx}}{x} + \log x\left( { - \tan x} \right)} \right)$
Let us substitute the value of u.$u = {(cosx)^{\log x}}$
So,
$ \Rightarrow \dfrac{{du}}{{dx}} = {(cosx)^{\log x}}\left( {\dfrac{{\log cosx}}{x} + \log x\left( { - \tan x} \right)} \right)$
We can also write the above term as below.
$ \Rightarrow \dfrac{{du}}{{dx}} = {(cosx)^{\log x}}\left( {\log x\left( { - \tan x} \right) + \dfrac{1}{x}\log cosx} \right)$..................(1)
Now, let us take the second part.
The second part is ${(logx)^x}$.
Let us assume the first part as v.
Therefore,
$ \Rightarrow v = {(logx)^x}$
Taking log both sides.
$ \Rightarrow \log v = \log \left[ {{{(logx)}^x}} \right]$
We will use the formula $\log \left( {{x^y}} \right) = y\log x$ on the right-hand side.
$ \Rightarrow \log v = x\log (\log x)$
Now, differentiate both sides with respect to x.
$ \Rightarrow \dfrac{d}{{dx}}\log v = \dfrac{d}{{dx}}\left( {x\log (\log x)} \right)$
Let us apply the formula $\dfrac{d}{{dx}}\log v = \dfrac{1}{v}\dfrac{{dv}}{{dx}}$ on the left-hand side and $\dfrac{d}{{dx}}\left( {x\log (\log x)} \right) = \log (\log x)\dfrac{d}{{dx}}x + x\dfrac{d}{{dx}}(\log \left( {\log x} \right))$ on the right-hand side.
Therefore,
$ \Rightarrow \dfrac{1}{v}\dfrac{{dv}}{{dx}} = \log (\log x)\dfrac{d}{{dx}}x + x\dfrac{d}{{dx}}(\log \left( {\log x} \right))$
Here, $\dfrac{d}{{dx}}x = 1$ and $\dfrac{d}{{dx}}(\log \left( {\log x} \right)) = \dfrac{1}{{\log x}}\dfrac{d}{{dx}}\log x$
$ \Rightarrow \dfrac{1}{v}\dfrac{{dv}}{{dx}} = \log (\log x)\left( 1 \right) + x\dfrac{1}{{\log x}}\dfrac{d}{{dx}}\log x$
Apply the formula $\dfrac{d}{{dx}}\log x = \dfrac{1}{x}$
So,$ \Rightarrow \dfrac{1}{v}\dfrac{{dv}}{{dx}} = \log (\log x) + x\dfrac{1}{{\log x\left( x \right)}}$
That is equal to,
$ \Rightarrow \dfrac{1}{v}\dfrac{{dv}}{{dx}} = \log (\log x) + \dfrac{1}{{\log x}}$
Let us multiply both sides by v.
$ \Rightarrow \dfrac{{dv}}{{dx}} = v\left( {\log (\log x) + \dfrac{1}{{\log x}}} \right)$
Here, substitute$v = {(logx)^x}$.
$ \Rightarrow \dfrac{{dv}}{{dx}} = {(logx)^x}\left( {\log (\log x) + \dfrac{1}{{\log x}}} \right)$
We can also write the above equation.
$ \Rightarrow \dfrac{{dv}}{{dx}} = {(logx)^x}\left( {\dfrac{1}{{\log x}} + \log (\log x)} \right)$................(2)
Now,
$\dfrac{{dy}}{{dx}} = \dfrac{{du}}{{dx}} + \dfrac{{dv}}{{dx}}$
Substitute the values from equations (1) and (2).
$ \Rightarrow \dfrac{{dy}}{{dx}} = {(cosx)^{\log x}}\left( {\log x\left( { - \tan x} \right) + \dfrac{1}{x}\log cosx} \right) + {(logx)^x}\left( {\log (\log x) + \dfrac{1}{{\log x}}} \right)$
Hence, the answer is true.
Note: Logarithmic differentiation: It is a method to find the derivatives of some complicated functions, using logarithms. There are cases in which differentiating the logarithm of a given function is simpler as compared to differentiating the function itself. By proper usage of properties of logarithms and chain rule finding, the derivatives become easy.
Here, we will use the following formulas:
$\log \left( {{x^y}} \right) = y\log x$
$\dfrac{d}{{dx}}\log u = \dfrac{1}{u}\dfrac{{du}}{{dx}}$
$\dfrac{d}{{dx}}\log x = \dfrac{1}{x}$
$\dfrac{d}{{dx}}\log \cos x = \dfrac{1}{{\cos x}}\dfrac{d}{{dx}}\cos x$
$\dfrac{d}{{dx}}\cos x = - \sin x$
$\dfrac{d}{{dx}}x = 1$
Complete step-by-step solution:
In this question, the given expression is
$ \Rightarrow Y = {(cosx)^{\log x}} + {(logx)^x}$
Now, we will divide the question into two parts.
The first part is ${(cosx)^{\log x}}$.
Let us assume the first part as u.
Therefore,
$ \Rightarrow u = {(cosx)^{\log x}}$
Taking log both sides.
$ \Rightarrow \log u = \log \left[ {{{(cosx)}^{\log x}}} \right]$
We will use the formula $\log \left( {{x^y}} \right) = y\log x$ on the right-hand side.
$ \Rightarrow \log u = \log x(\log cosx)$
Now, differentiate both sides with respect to x.
$ \Rightarrow \dfrac{d}{{dx}}\log u = \dfrac{d}{{dx}}\log x(\log cosx)$
Let us apply the formula $\dfrac{d}{{dx}}\log u = \dfrac{1}{u}\dfrac{{du}}{{dx}}$ on the left-hand side and $\dfrac{d}{{dx}}\log x(\log cosx) = \log cosx\dfrac{d}{{dx}}\log x + \log x\dfrac{d}{{dx}}(\log cosx)$ on the right-hand side.
Therefore,
$ \Rightarrow \dfrac{1}{u}\dfrac{{du}}{{dx}} = \log cosx\dfrac{d}{{dx}}\log x + \log x\dfrac{d}{{dx}}(\log cosx)$
Here, apply the formulas $\dfrac{d}{{dx}}\log x = \dfrac{1}{x}$, and $\dfrac{d}{{dx}}\log \cos x = \dfrac{1}{{\cos x}}\dfrac{d}{{dx}}\cos x$.
$ \Rightarrow \dfrac{1}{u}\dfrac{{du}}{{dx}} = \log cosx\left( {\dfrac{1}{x}} \right) + \log x\left( {\dfrac{1}{{\cos x}}} \right)\dfrac{d}{{dx}}cosx$
Now, as we already know that $\dfrac{d}{{dx}}\cos x = - \sin x$
$ \Rightarrow \dfrac{1}{u}\dfrac{{du}}{{dx}} = \dfrac{{\log cosx}}{x} + \dfrac{{\log x}}{{\cos x}}\left( { - \sin x} \right)$
We know that $\dfrac{{\sin x}}{{\cos x}} = \tan x$.
Therefore,
$ \Rightarrow \dfrac{1}{u}\dfrac{{du}}{{dx}} = \dfrac{{\log cosx}}{x} + \log x\left( { - \tan x} \right)$
Now, multiply both sides by u.
$ \Rightarrow \dfrac{{du}}{{dx}} = u\left( {\dfrac{{\log cosx}}{x} + \log x\left( { - \tan x} \right)} \right)$
Let us substitute the value of u.$u = {(cosx)^{\log x}}$
So,
$ \Rightarrow \dfrac{{du}}{{dx}} = {(cosx)^{\log x}}\left( {\dfrac{{\log cosx}}{x} + \log x\left( { - \tan x} \right)} \right)$
We can also write the above term as below.
$ \Rightarrow \dfrac{{du}}{{dx}} = {(cosx)^{\log x}}\left( {\log x\left( { - \tan x} \right) + \dfrac{1}{x}\log cosx} \right)$..................(1)
Now, let us take the second part.
The second part is ${(logx)^x}$.
Let us assume the first part as v.
Therefore,
$ \Rightarrow v = {(logx)^x}$
Taking log both sides.
$ \Rightarrow \log v = \log \left[ {{{(logx)}^x}} \right]$
We will use the formula $\log \left( {{x^y}} \right) = y\log x$ on the right-hand side.
$ \Rightarrow \log v = x\log (\log x)$
Now, differentiate both sides with respect to x.
$ \Rightarrow \dfrac{d}{{dx}}\log v = \dfrac{d}{{dx}}\left( {x\log (\log x)} \right)$
Let us apply the formula $\dfrac{d}{{dx}}\log v = \dfrac{1}{v}\dfrac{{dv}}{{dx}}$ on the left-hand side and $\dfrac{d}{{dx}}\left( {x\log (\log x)} \right) = \log (\log x)\dfrac{d}{{dx}}x + x\dfrac{d}{{dx}}(\log \left( {\log x} \right))$ on the right-hand side.
Therefore,
$ \Rightarrow \dfrac{1}{v}\dfrac{{dv}}{{dx}} = \log (\log x)\dfrac{d}{{dx}}x + x\dfrac{d}{{dx}}(\log \left( {\log x} \right))$
Here, $\dfrac{d}{{dx}}x = 1$ and $\dfrac{d}{{dx}}(\log \left( {\log x} \right)) = \dfrac{1}{{\log x}}\dfrac{d}{{dx}}\log x$
$ \Rightarrow \dfrac{1}{v}\dfrac{{dv}}{{dx}} = \log (\log x)\left( 1 \right) + x\dfrac{1}{{\log x}}\dfrac{d}{{dx}}\log x$
Apply the formula $\dfrac{d}{{dx}}\log x = \dfrac{1}{x}$
So,$ \Rightarrow \dfrac{1}{v}\dfrac{{dv}}{{dx}} = \log (\log x) + x\dfrac{1}{{\log x\left( x \right)}}$
That is equal to,
$ \Rightarrow \dfrac{1}{v}\dfrac{{dv}}{{dx}} = \log (\log x) + \dfrac{1}{{\log x}}$
Let us multiply both sides by v.
$ \Rightarrow \dfrac{{dv}}{{dx}} = v\left( {\log (\log x) + \dfrac{1}{{\log x}}} \right)$
Here, substitute$v = {(logx)^x}$.
$ \Rightarrow \dfrac{{dv}}{{dx}} = {(logx)^x}\left( {\log (\log x) + \dfrac{1}{{\log x}}} \right)$
We can also write the above equation.
$ \Rightarrow \dfrac{{dv}}{{dx}} = {(logx)^x}\left( {\dfrac{1}{{\log x}} + \log (\log x)} \right)$................(2)
Now,
$\dfrac{{dy}}{{dx}} = \dfrac{{du}}{{dx}} + \dfrac{{dv}}{{dx}}$
Substitute the values from equations (1) and (2).
$ \Rightarrow \dfrac{{dy}}{{dx}} = {(cosx)^{\log x}}\left( {\log x\left( { - \tan x} \right) + \dfrac{1}{x}\log cosx} \right) + {(logx)^x}\left( {\log (\log x) + \dfrac{1}{{\log x}}} \right)$
Hence, the answer is true.
Note: Logarithmic differentiation: It is a method to find the derivatives of some complicated functions, using logarithms. There are cases in which differentiating the logarithm of a given function is simpler as compared to differentiating the function itself. By proper usage of properties of logarithms and chain rule finding, the derivatives become easy.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 10 biology CBSE

Dr BR Ambedkars fathers name was Ramaji Sakpal and class 10 social science CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the full form of POSCO class 10 social science CBSE
