# If ${{x}_{1}},{{x}_{2}},.....,{{x}_{n}}\text{ and }\dfrac{1}{{{h}_{1}}},\dfrac{1}{{{h}_{2}}},.....,\dfrac{1}{{{h}_{n}}}$ are two A.P.s such that ${{x}_{3}}={{h}_{2}}=8\ and {{x}_{8}}={{h}_{7}}=20,$ then ${{x}_{5}}.{{h}_{10}}$ equals

(A) 2560

(B) 2650

(C) 3200

(D) 1600

Last updated date: 17th Mar 2023

•

Total views: 304.8k

•

Views today: 3.85k

Answer

Verified

304.8k+ views

Hint: Use general term of AP, ${{T}_{n}}=a+\left( n-1 \right)d$ , where a is first term, d is common difference and n is number of terms. Find the first term and common difference of the given series to calculate ${{x}_{5}}\And {{h}_{10}}$.

We have $\left( {{x}_{1}},{{x}_{2}},.....,{{x}_{n}} \right)\text{ and }\left( \dfrac{1}{{{h}_{1}}},\dfrac{1}{{{h}_{2}}},.....,\dfrac{1}{{{h}_{n}}} \right)$ are two AP’s where,

${{x}_{3}}={{h}_{2}}=8$………………… (1)

${{x}_{8}}={{h}_{7}}=20$……………… (2)

We need to determine ${{x}_{5}}.{{h}_{10}}=?$

As we know general term of an A.P, where first term is ‘a’ and common difference is ‘d’

${{T}_{n}}=a+\left( n-1 \right)d$………………. (3)

Now, from equation (1), we have

${{x}_{3}}={{h}_{2}}=8$

From equation (3), we can calculate ${{x}_{3}}$ as;

Let $\left( {{x}_{1}},{{x}_{2}},.....,{{x}_{n}} \right)$ have common difference of ${{d}_{1}}$ then,

Hence,

$\begin{align}

& {{x}_{3}}={{x}_{1}}+\left( 3-1 \right){{d}_{1}} \\

& {{x}_{3}}={{x}_{1}}+2{{d}_{1}}=8 \\

\end{align}$ …………(4)

For ${{h}_{2}}$, we have given that $\dfrac{1}{{{h}_{1}}},\dfrac{1}{{{h}_{2}}},.....,\dfrac{1}{{{h}_{n}}}$are in AP, let common difference of this AP be ${{d}_{2}}$, therefore we can write

$\begin{align}

& \dfrac{1}{{{h}_{2}}}=\dfrac{1}{{{h}_{1}}}+\left( 2-1 \right){{d}_{2}} \\

& \dfrac{1}{{{h}_{2}}}=\dfrac{1}{{{h}_{1}}}+\dfrac{{{d}_{2}}}{1}=\dfrac{1+{{h}_{1}}{{d}_{2}}}{{{h}_{1}}} \\

& {{h}_{2}}=\dfrac{{{h}_{1}}}{{{h}_{1}}{{d}_{2}}+1}=8 \\

& {{h}_{1}}=8{{h}_{1}}{{d}_{2}}+8 \\

& {{h}_{1}}\left( 1-8{{d}_{2}} \right)=8 \\

\end{align}$

${{h}_{1}}=\dfrac{8}{1-8{{d}_{2}}}$…………………. (5)

Now, from the equation (2) we have

${{x}_{8}}={{h}_{7}}=20$

${{x}_{8}}$can be written by equation (3). As, we have ${{x}_{1}},{{x}_{2}},.....,{{x}_{n}}$are in AP with c.d.;

${{x}_{8}}={{x}_{1}}+\left( 8-1 \right){{d}_{1}}=20$

${{x}_{1}}+7{{d}_{1}}=20$……………….. (6)

For ${{h}_{7}}$ we have series $\dfrac{1}{{{h}_{1}}},\dfrac{1}{{{h}_{2}}},.....,\dfrac{1}{{{h}_{n}}}$in AP with $c.d={{d}_{2}}$ from there, we can write;

\[\begin{align}

& \dfrac{1}{{{h}_{7}}}=\dfrac{1}{{{h}_{1}}}+6{{d}_{2}} \\

& \dfrac{1}{{{h}_{7}}}=\dfrac{1+6{{d}_{2}}{{h}_{1}}}{{{h}_{1}}} \\

& {{h}_{7}}=\dfrac{{{h}_{1}}}{1+6{{d}_{2}}{{h}_{1}}}=20 \\

& {{h}_{1}}=20+120{{d}_{2}}{{h}_{1}} \\

\end{align}\]

\[{{h}_{1}}=\dfrac{20}{1-120{{d}_{2}}}\]…………………. (7)

Now, we can get ${{x}_{1}}\And {{d}_{1}}$ from equation (4) and (6) by solving them as follows;

Therefore, we have;

${{x}_{1}}+2{{d}_{1}}=8\And {{x}_{1}}+7{{d}_{1}}=20$

Subtracting both the equations, we get

\[\dfrac{\begin{matrix}

{{x}_{1}}+2{{d}_{1}}=8 \\

\begin{align}

& {{x}_{1}}+7{{d}_{1}}=20 \\

& - \\

\end{align} \\

\end{matrix}}{0-5{{d}_{1}}=-12}\]

Hence,${{d}_{1}}=\dfrac{12}{5}$

Now, for ${{x}_{1}}$, we have ${{x}_{1}}+2{{d}_{1}}=8$

$\begin{align}

& \because {{x}_{1}}+2\times \dfrac{12}{5}=8 \\

& {{x}_{1}}=8-\dfrac{24}{5}=\dfrac{16}{5} \\

\end{align}$

Hence, we get

${{x}_{1}}=\dfrac{16}{5},{{d}_{1}}=\dfrac{12}{5}$ ……………….. (8)

For ${{h}_{1}}\And {{d}_{2}}$, we have equations (5) and (7), we get

\[{{h}_{1}}=\dfrac{8}{1-8{{d}_{2}}}=\dfrac{20}{1-120{{d}_{2}}}\]

On simplifying above relation, we get;

\[\dfrac{2}{1-8{{d}_{2}}}=\dfrac{5}{1-120{{d}_{2}}}\]

On cross – multiplying, we get

$\begin{align}

& 2-240{{d}_{2}}=5-40{{d}_{2}} \\

& -3=200{{d}_{2}} \\

& {{d}_{2}}=\dfrac{-3}{200} \\

\end{align}$

Now, for calculating ${{h}_{1}}$, we have;

\[\begin{align}

& {{h}_{1}}=\dfrac{8}{1-8{{d}_{2}}}=\dfrac{8}{1-8\times \left( \dfrac{-3}{200} \right)} \\

& {{h}_{1}}=\dfrac{8}{1+\left( \dfrac{3}{25} \right)}=\dfrac{8\times 25}{28} \\

& {{h}_{1}}=\dfrac{50}{7} \\

\end{align}\]

Hence, Now we have;

\[{{h}_{1}}=\dfrac{50}{7},{{d}_{2}}=\dfrac{-3}{200}\]……………….. (9)

Now, coming to question we have to calculate

${{x}_{5}}={{h}_{10}}$

For ${{x}_{5}}$, we have first term of series ${{x}_{1}}=\dfrac{16}{5}$ and common difference ${{d}_{1}}=\dfrac{12}{5}$ from equation (8).

Hence, from equation (3), we have general formula for A.P., we get

$\begin{align}

& {{x}_{5}}={{x}_{1}}+4{{d}_{1}} \\

& {{x}_{5}}=\dfrac{16}{5}+4\times \dfrac{12}{5}=\dfrac{64}{5}...........\left( 10 \right) \\

\end{align}$

For ${{h}_{10}}$, we have series $\dfrac{1}{{{h}_{1}}},\dfrac{1}{{{h}_{2}}},.....,\dfrac{1}{{{h}_{n}}}$ in A.P and \[{{h}_{1}}=\dfrac{50}{7}\] and common difference \[{{d}_{2}}=\dfrac{-3}{200}\] from equation (9).

Using equation (5), we can write;

$\begin{align}

& \dfrac{1}{{{h}_{10}}}=\dfrac{1}{{{h}_{1}}}+9{{d}_{2}}=\dfrac{7}{50}+9\times \dfrac{-3}{200} \\

& \dfrac{1}{{{h}_{10}}}=\dfrac{7}{50}-\dfrac{27}{200}=\dfrac{28-27}{200} \\

& {{h}_{10}}=200.....................................\left( 11 \right) \\

\end{align}$

Now, ${{x}_{5}}.{{h}_{10}}$ can be calculated from equations (10) and (11), we get;

$\begin{align}

& {{x}_{5}}.{{h}_{10}}=\dfrac{64}{5}\times 200=64\times 40 \\

& {{x}_{5}}.{{h}_{10}}=2560 \\

\end{align}$

Hence, the answer is option (A).

Note: One can be easily confused with second series and can write general term for this series as

$\begin{align}

& {{T}_{n}}={{h}_{1}}+\left( n-1 \right)d \\

& Or \\

& \dfrac{1}{{{h}_{1}}}+\left( n-1 \right)\dfrac{1}{{{d}_{1}}} \\

\end{align}$

Which will be wrong and give the wrong solution. Correct general term for the second series is

${{T}_{n}}=\dfrac{1}{{{h}_{1}}}+\left( n-1 \right)d$.

__Complete step-by-step answer:__We have $\left( {{x}_{1}},{{x}_{2}},.....,{{x}_{n}} \right)\text{ and }\left( \dfrac{1}{{{h}_{1}}},\dfrac{1}{{{h}_{2}}},.....,\dfrac{1}{{{h}_{n}}} \right)$ are two AP’s where,

${{x}_{3}}={{h}_{2}}=8$………………… (1)

${{x}_{8}}={{h}_{7}}=20$……………… (2)

We need to determine ${{x}_{5}}.{{h}_{10}}=?$

As we know general term of an A.P, where first term is ‘a’ and common difference is ‘d’

${{T}_{n}}=a+\left( n-1 \right)d$………………. (3)

Now, from equation (1), we have

${{x}_{3}}={{h}_{2}}=8$

From equation (3), we can calculate ${{x}_{3}}$ as;

Let $\left( {{x}_{1}},{{x}_{2}},.....,{{x}_{n}} \right)$ have common difference of ${{d}_{1}}$ then,

Hence,

$\begin{align}

& {{x}_{3}}={{x}_{1}}+\left( 3-1 \right){{d}_{1}} \\

& {{x}_{3}}={{x}_{1}}+2{{d}_{1}}=8 \\

\end{align}$ …………(4)

For ${{h}_{2}}$, we have given that $\dfrac{1}{{{h}_{1}}},\dfrac{1}{{{h}_{2}}},.....,\dfrac{1}{{{h}_{n}}}$are in AP, let common difference of this AP be ${{d}_{2}}$, therefore we can write

$\begin{align}

& \dfrac{1}{{{h}_{2}}}=\dfrac{1}{{{h}_{1}}}+\left( 2-1 \right){{d}_{2}} \\

& \dfrac{1}{{{h}_{2}}}=\dfrac{1}{{{h}_{1}}}+\dfrac{{{d}_{2}}}{1}=\dfrac{1+{{h}_{1}}{{d}_{2}}}{{{h}_{1}}} \\

& {{h}_{2}}=\dfrac{{{h}_{1}}}{{{h}_{1}}{{d}_{2}}+1}=8 \\

& {{h}_{1}}=8{{h}_{1}}{{d}_{2}}+8 \\

& {{h}_{1}}\left( 1-8{{d}_{2}} \right)=8 \\

\end{align}$

${{h}_{1}}=\dfrac{8}{1-8{{d}_{2}}}$…………………. (5)

Now, from the equation (2) we have

${{x}_{8}}={{h}_{7}}=20$

${{x}_{8}}$can be written by equation (3). As, we have ${{x}_{1}},{{x}_{2}},.....,{{x}_{n}}$are in AP with c.d.;

${{x}_{8}}={{x}_{1}}+\left( 8-1 \right){{d}_{1}}=20$

${{x}_{1}}+7{{d}_{1}}=20$……………….. (6)

For ${{h}_{7}}$ we have series $\dfrac{1}{{{h}_{1}}},\dfrac{1}{{{h}_{2}}},.....,\dfrac{1}{{{h}_{n}}}$in AP with $c.d={{d}_{2}}$ from there, we can write;

\[\begin{align}

& \dfrac{1}{{{h}_{7}}}=\dfrac{1}{{{h}_{1}}}+6{{d}_{2}} \\

& \dfrac{1}{{{h}_{7}}}=\dfrac{1+6{{d}_{2}}{{h}_{1}}}{{{h}_{1}}} \\

& {{h}_{7}}=\dfrac{{{h}_{1}}}{1+6{{d}_{2}}{{h}_{1}}}=20 \\

& {{h}_{1}}=20+120{{d}_{2}}{{h}_{1}} \\

\end{align}\]

\[{{h}_{1}}=\dfrac{20}{1-120{{d}_{2}}}\]…………………. (7)

Now, we can get ${{x}_{1}}\And {{d}_{1}}$ from equation (4) and (6) by solving them as follows;

Therefore, we have;

${{x}_{1}}+2{{d}_{1}}=8\And {{x}_{1}}+7{{d}_{1}}=20$

Subtracting both the equations, we get

\[\dfrac{\begin{matrix}

{{x}_{1}}+2{{d}_{1}}=8 \\

\begin{align}

& {{x}_{1}}+7{{d}_{1}}=20 \\

& - \\

\end{align} \\

\end{matrix}}{0-5{{d}_{1}}=-12}\]

Hence,${{d}_{1}}=\dfrac{12}{5}$

Now, for ${{x}_{1}}$, we have ${{x}_{1}}+2{{d}_{1}}=8$

$\begin{align}

& \because {{x}_{1}}+2\times \dfrac{12}{5}=8 \\

& {{x}_{1}}=8-\dfrac{24}{5}=\dfrac{16}{5} \\

\end{align}$

Hence, we get

${{x}_{1}}=\dfrac{16}{5},{{d}_{1}}=\dfrac{12}{5}$ ……………….. (8)

For ${{h}_{1}}\And {{d}_{2}}$, we have equations (5) and (7), we get

\[{{h}_{1}}=\dfrac{8}{1-8{{d}_{2}}}=\dfrac{20}{1-120{{d}_{2}}}\]

On simplifying above relation, we get;

\[\dfrac{2}{1-8{{d}_{2}}}=\dfrac{5}{1-120{{d}_{2}}}\]

On cross – multiplying, we get

$\begin{align}

& 2-240{{d}_{2}}=5-40{{d}_{2}} \\

& -3=200{{d}_{2}} \\

& {{d}_{2}}=\dfrac{-3}{200} \\

\end{align}$

Now, for calculating ${{h}_{1}}$, we have;

\[\begin{align}

& {{h}_{1}}=\dfrac{8}{1-8{{d}_{2}}}=\dfrac{8}{1-8\times \left( \dfrac{-3}{200} \right)} \\

& {{h}_{1}}=\dfrac{8}{1+\left( \dfrac{3}{25} \right)}=\dfrac{8\times 25}{28} \\

& {{h}_{1}}=\dfrac{50}{7} \\

\end{align}\]

Hence, Now we have;

\[{{h}_{1}}=\dfrac{50}{7},{{d}_{2}}=\dfrac{-3}{200}\]……………….. (9)

Now, coming to question we have to calculate

${{x}_{5}}={{h}_{10}}$

For ${{x}_{5}}$, we have first term of series ${{x}_{1}}=\dfrac{16}{5}$ and common difference ${{d}_{1}}=\dfrac{12}{5}$ from equation (8).

Hence, from equation (3), we have general formula for A.P., we get

$\begin{align}

& {{x}_{5}}={{x}_{1}}+4{{d}_{1}} \\

& {{x}_{5}}=\dfrac{16}{5}+4\times \dfrac{12}{5}=\dfrac{64}{5}...........\left( 10 \right) \\

\end{align}$

For ${{h}_{10}}$, we have series $\dfrac{1}{{{h}_{1}}},\dfrac{1}{{{h}_{2}}},.....,\dfrac{1}{{{h}_{n}}}$ in A.P and \[{{h}_{1}}=\dfrac{50}{7}\] and common difference \[{{d}_{2}}=\dfrac{-3}{200}\] from equation (9).

Using equation (5), we can write;

$\begin{align}

& \dfrac{1}{{{h}_{10}}}=\dfrac{1}{{{h}_{1}}}+9{{d}_{2}}=\dfrac{7}{50}+9\times \dfrac{-3}{200} \\

& \dfrac{1}{{{h}_{10}}}=\dfrac{7}{50}-\dfrac{27}{200}=\dfrac{28-27}{200} \\

& {{h}_{10}}=200.....................................\left( 11 \right) \\

\end{align}$

Now, ${{x}_{5}}.{{h}_{10}}$ can be calculated from equations (10) and (11), we get;

$\begin{align}

& {{x}_{5}}.{{h}_{10}}=\dfrac{64}{5}\times 200=64\times 40 \\

& {{x}_{5}}.{{h}_{10}}=2560 \\

\end{align}$

Hence, the answer is option (A).

Note: One can be easily confused with second series and can write general term for this series as

$\begin{align}

& {{T}_{n}}={{h}_{1}}+\left( n-1 \right)d \\

& Or \\

& \dfrac{1}{{{h}_{1}}}+\left( n-1 \right)\dfrac{1}{{{d}_{1}}} \\

\end{align}$

Which will be wrong and give the wrong solution. Correct general term for the second series is

${{T}_{n}}=\dfrac{1}{{{h}_{1}}}+\left( n-1 \right)d$.

Recently Updated Pages

If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE