
If ${{x}_{1}},{{x}_{2}},.....,{{x}_{n}}\text{ and }\dfrac{1}{{{h}_{1}}},\dfrac{1}{{{h}_{2}}},.....,\dfrac{1}{{{h}_{n}}}$ are two A.P.s such that ${{x}_{3}}={{h}_{2}}=8\ and {{x}_{8}}={{h}_{7}}=20,$ then ${{x}_{5}}.{{h}_{10}}$ equals
(A) 2560
(B) 2650
(C) 3200
(D) 1600
Answer
606.9k+ views
Hint: Use general term of AP, ${{T}_{n}}=a+\left( n-1 \right)d$ , where a is first term, d is common difference and n is number of terms. Find the first term and common difference of the given series to calculate ${{x}_{5}}\And {{h}_{10}}$.
Complete step-by-step answer:
We have $\left( {{x}_{1}},{{x}_{2}},.....,{{x}_{n}} \right)\text{ and }\left( \dfrac{1}{{{h}_{1}}},\dfrac{1}{{{h}_{2}}},.....,\dfrac{1}{{{h}_{n}}} \right)$ are two AP’s where,
${{x}_{3}}={{h}_{2}}=8$………………… (1)
${{x}_{8}}={{h}_{7}}=20$……………… (2)
We need to determine ${{x}_{5}}.{{h}_{10}}=?$
As we know general term of an A.P, where first term is ‘a’ and common difference is ‘d’
${{T}_{n}}=a+\left( n-1 \right)d$………………. (3)
Now, from equation (1), we have
${{x}_{3}}={{h}_{2}}=8$
From equation (3), we can calculate ${{x}_{3}}$ as;
Let $\left( {{x}_{1}},{{x}_{2}},.....,{{x}_{n}} \right)$ have common difference of ${{d}_{1}}$ then,
Hence,
$\begin{align}
& {{x}_{3}}={{x}_{1}}+\left( 3-1 \right){{d}_{1}} \\
& {{x}_{3}}={{x}_{1}}+2{{d}_{1}}=8 \\
\end{align}$ …………(4)
For ${{h}_{2}}$, we have given that $\dfrac{1}{{{h}_{1}}},\dfrac{1}{{{h}_{2}}},.....,\dfrac{1}{{{h}_{n}}}$are in AP, let common difference of this AP be ${{d}_{2}}$, therefore we can write
$\begin{align}
& \dfrac{1}{{{h}_{2}}}=\dfrac{1}{{{h}_{1}}}+\left( 2-1 \right){{d}_{2}} \\
& \dfrac{1}{{{h}_{2}}}=\dfrac{1}{{{h}_{1}}}+\dfrac{{{d}_{2}}}{1}=\dfrac{1+{{h}_{1}}{{d}_{2}}}{{{h}_{1}}} \\
& {{h}_{2}}=\dfrac{{{h}_{1}}}{{{h}_{1}}{{d}_{2}}+1}=8 \\
& {{h}_{1}}=8{{h}_{1}}{{d}_{2}}+8 \\
& {{h}_{1}}\left( 1-8{{d}_{2}} \right)=8 \\
\end{align}$
${{h}_{1}}=\dfrac{8}{1-8{{d}_{2}}}$…………………. (5)
Now, from the equation (2) we have
${{x}_{8}}={{h}_{7}}=20$
${{x}_{8}}$can be written by equation (3). As, we have ${{x}_{1}},{{x}_{2}},.....,{{x}_{n}}$are in AP with c.d.;
${{x}_{8}}={{x}_{1}}+\left( 8-1 \right){{d}_{1}}=20$
${{x}_{1}}+7{{d}_{1}}=20$……………….. (6)
For ${{h}_{7}}$ we have series $\dfrac{1}{{{h}_{1}}},\dfrac{1}{{{h}_{2}}},.....,\dfrac{1}{{{h}_{n}}}$in AP with $c.d={{d}_{2}}$ from there, we can write;
\[\begin{align}
& \dfrac{1}{{{h}_{7}}}=\dfrac{1}{{{h}_{1}}}+6{{d}_{2}} \\
& \dfrac{1}{{{h}_{7}}}=\dfrac{1+6{{d}_{2}}{{h}_{1}}}{{{h}_{1}}} \\
& {{h}_{7}}=\dfrac{{{h}_{1}}}{1+6{{d}_{2}}{{h}_{1}}}=20 \\
& {{h}_{1}}=20+120{{d}_{2}}{{h}_{1}} \\
\end{align}\]
\[{{h}_{1}}=\dfrac{20}{1-120{{d}_{2}}}\]…………………. (7)
Now, we can get ${{x}_{1}}\And {{d}_{1}}$ from equation (4) and (6) by solving them as follows;
Therefore, we have;
${{x}_{1}}+2{{d}_{1}}=8\And {{x}_{1}}+7{{d}_{1}}=20$
Subtracting both the equations, we get
\[\dfrac{\begin{matrix}
{{x}_{1}}+2{{d}_{1}}=8 \\
\begin{align}
& {{x}_{1}}+7{{d}_{1}}=20 \\
& - \\
\end{align} \\
\end{matrix}}{0-5{{d}_{1}}=-12}\]
Hence,${{d}_{1}}=\dfrac{12}{5}$
Now, for ${{x}_{1}}$, we have ${{x}_{1}}+2{{d}_{1}}=8$
$\begin{align}
& \because {{x}_{1}}+2\times \dfrac{12}{5}=8 \\
& {{x}_{1}}=8-\dfrac{24}{5}=\dfrac{16}{5} \\
\end{align}$
Hence, we get
${{x}_{1}}=\dfrac{16}{5},{{d}_{1}}=\dfrac{12}{5}$ ……………….. (8)
For ${{h}_{1}}\And {{d}_{2}}$, we have equations (5) and (7), we get
\[{{h}_{1}}=\dfrac{8}{1-8{{d}_{2}}}=\dfrac{20}{1-120{{d}_{2}}}\]
On simplifying above relation, we get;
\[\dfrac{2}{1-8{{d}_{2}}}=\dfrac{5}{1-120{{d}_{2}}}\]
On cross – multiplying, we get
$\begin{align}
& 2-240{{d}_{2}}=5-40{{d}_{2}} \\
& -3=200{{d}_{2}} \\
& {{d}_{2}}=\dfrac{-3}{200} \\
\end{align}$
Now, for calculating ${{h}_{1}}$, we have;
\[\begin{align}
& {{h}_{1}}=\dfrac{8}{1-8{{d}_{2}}}=\dfrac{8}{1-8\times \left( \dfrac{-3}{200} \right)} \\
& {{h}_{1}}=\dfrac{8}{1+\left( \dfrac{3}{25} \right)}=\dfrac{8\times 25}{28} \\
& {{h}_{1}}=\dfrac{50}{7} \\
\end{align}\]
Hence, Now we have;
\[{{h}_{1}}=\dfrac{50}{7},{{d}_{2}}=\dfrac{-3}{200}\]……………….. (9)
Now, coming to question we have to calculate
${{x}_{5}}={{h}_{10}}$
For ${{x}_{5}}$, we have first term of series ${{x}_{1}}=\dfrac{16}{5}$ and common difference ${{d}_{1}}=\dfrac{12}{5}$ from equation (8).
Hence, from equation (3), we have general formula for A.P., we get
$\begin{align}
& {{x}_{5}}={{x}_{1}}+4{{d}_{1}} \\
& {{x}_{5}}=\dfrac{16}{5}+4\times \dfrac{12}{5}=\dfrac{64}{5}...........\left( 10 \right) \\
\end{align}$
For ${{h}_{10}}$, we have series $\dfrac{1}{{{h}_{1}}},\dfrac{1}{{{h}_{2}}},.....,\dfrac{1}{{{h}_{n}}}$ in A.P and \[{{h}_{1}}=\dfrac{50}{7}\] and common difference \[{{d}_{2}}=\dfrac{-3}{200}\] from equation (9).
Using equation (5), we can write;
$\begin{align}
& \dfrac{1}{{{h}_{10}}}=\dfrac{1}{{{h}_{1}}}+9{{d}_{2}}=\dfrac{7}{50}+9\times \dfrac{-3}{200} \\
& \dfrac{1}{{{h}_{10}}}=\dfrac{7}{50}-\dfrac{27}{200}=\dfrac{28-27}{200} \\
& {{h}_{10}}=200.....................................\left( 11 \right) \\
\end{align}$
Now, ${{x}_{5}}.{{h}_{10}}$ can be calculated from equations (10) and (11), we get;
$\begin{align}
& {{x}_{5}}.{{h}_{10}}=\dfrac{64}{5}\times 200=64\times 40 \\
& {{x}_{5}}.{{h}_{10}}=2560 \\
\end{align}$
Hence, the answer is option (A).
Note: One can be easily confused with second series and can write general term for this series as
$\begin{align}
& {{T}_{n}}={{h}_{1}}+\left( n-1 \right)d \\
& Or \\
& \dfrac{1}{{{h}_{1}}}+\left( n-1 \right)\dfrac{1}{{{d}_{1}}} \\
\end{align}$
Which will be wrong and give the wrong solution. Correct general term for the second series is
${{T}_{n}}=\dfrac{1}{{{h}_{1}}}+\left( n-1 \right)d$.
Complete step-by-step answer:
We have $\left( {{x}_{1}},{{x}_{2}},.....,{{x}_{n}} \right)\text{ and }\left( \dfrac{1}{{{h}_{1}}},\dfrac{1}{{{h}_{2}}},.....,\dfrac{1}{{{h}_{n}}} \right)$ are two AP’s where,
${{x}_{3}}={{h}_{2}}=8$………………… (1)
${{x}_{8}}={{h}_{7}}=20$……………… (2)
We need to determine ${{x}_{5}}.{{h}_{10}}=?$
As we know general term of an A.P, where first term is ‘a’ and common difference is ‘d’
${{T}_{n}}=a+\left( n-1 \right)d$………………. (3)
Now, from equation (1), we have
${{x}_{3}}={{h}_{2}}=8$
From equation (3), we can calculate ${{x}_{3}}$ as;
Let $\left( {{x}_{1}},{{x}_{2}},.....,{{x}_{n}} \right)$ have common difference of ${{d}_{1}}$ then,
Hence,
$\begin{align}
& {{x}_{3}}={{x}_{1}}+\left( 3-1 \right){{d}_{1}} \\
& {{x}_{3}}={{x}_{1}}+2{{d}_{1}}=8 \\
\end{align}$ …………(4)
For ${{h}_{2}}$, we have given that $\dfrac{1}{{{h}_{1}}},\dfrac{1}{{{h}_{2}}},.....,\dfrac{1}{{{h}_{n}}}$are in AP, let common difference of this AP be ${{d}_{2}}$, therefore we can write
$\begin{align}
& \dfrac{1}{{{h}_{2}}}=\dfrac{1}{{{h}_{1}}}+\left( 2-1 \right){{d}_{2}} \\
& \dfrac{1}{{{h}_{2}}}=\dfrac{1}{{{h}_{1}}}+\dfrac{{{d}_{2}}}{1}=\dfrac{1+{{h}_{1}}{{d}_{2}}}{{{h}_{1}}} \\
& {{h}_{2}}=\dfrac{{{h}_{1}}}{{{h}_{1}}{{d}_{2}}+1}=8 \\
& {{h}_{1}}=8{{h}_{1}}{{d}_{2}}+8 \\
& {{h}_{1}}\left( 1-8{{d}_{2}} \right)=8 \\
\end{align}$
${{h}_{1}}=\dfrac{8}{1-8{{d}_{2}}}$…………………. (5)
Now, from the equation (2) we have
${{x}_{8}}={{h}_{7}}=20$
${{x}_{8}}$can be written by equation (3). As, we have ${{x}_{1}},{{x}_{2}},.....,{{x}_{n}}$are in AP with c.d.;
${{x}_{8}}={{x}_{1}}+\left( 8-1 \right){{d}_{1}}=20$
${{x}_{1}}+7{{d}_{1}}=20$……………….. (6)
For ${{h}_{7}}$ we have series $\dfrac{1}{{{h}_{1}}},\dfrac{1}{{{h}_{2}}},.....,\dfrac{1}{{{h}_{n}}}$in AP with $c.d={{d}_{2}}$ from there, we can write;
\[\begin{align}
& \dfrac{1}{{{h}_{7}}}=\dfrac{1}{{{h}_{1}}}+6{{d}_{2}} \\
& \dfrac{1}{{{h}_{7}}}=\dfrac{1+6{{d}_{2}}{{h}_{1}}}{{{h}_{1}}} \\
& {{h}_{7}}=\dfrac{{{h}_{1}}}{1+6{{d}_{2}}{{h}_{1}}}=20 \\
& {{h}_{1}}=20+120{{d}_{2}}{{h}_{1}} \\
\end{align}\]
\[{{h}_{1}}=\dfrac{20}{1-120{{d}_{2}}}\]…………………. (7)
Now, we can get ${{x}_{1}}\And {{d}_{1}}$ from equation (4) and (6) by solving them as follows;
Therefore, we have;
${{x}_{1}}+2{{d}_{1}}=8\And {{x}_{1}}+7{{d}_{1}}=20$
Subtracting both the equations, we get
\[\dfrac{\begin{matrix}
{{x}_{1}}+2{{d}_{1}}=8 \\
\begin{align}
& {{x}_{1}}+7{{d}_{1}}=20 \\
& - \\
\end{align} \\
\end{matrix}}{0-5{{d}_{1}}=-12}\]
Hence,${{d}_{1}}=\dfrac{12}{5}$
Now, for ${{x}_{1}}$, we have ${{x}_{1}}+2{{d}_{1}}=8$
$\begin{align}
& \because {{x}_{1}}+2\times \dfrac{12}{5}=8 \\
& {{x}_{1}}=8-\dfrac{24}{5}=\dfrac{16}{5} \\
\end{align}$
Hence, we get
${{x}_{1}}=\dfrac{16}{5},{{d}_{1}}=\dfrac{12}{5}$ ……………….. (8)
For ${{h}_{1}}\And {{d}_{2}}$, we have equations (5) and (7), we get
\[{{h}_{1}}=\dfrac{8}{1-8{{d}_{2}}}=\dfrac{20}{1-120{{d}_{2}}}\]
On simplifying above relation, we get;
\[\dfrac{2}{1-8{{d}_{2}}}=\dfrac{5}{1-120{{d}_{2}}}\]
On cross – multiplying, we get
$\begin{align}
& 2-240{{d}_{2}}=5-40{{d}_{2}} \\
& -3=200{{d}_{2}} \\
& {{d}_{2}}=\dfrac{-3}{200} \\
\end{align}$
Now, for calculating ${{h}_{1}}$, we have;
\[\begin{align}
& {{h}_{1}}=\dfrac{8}{1-8{{d}_{2}}}=\dfrac{8}{1-8\times \left( \dfrac{-3}{200} \right)} \\
& {{h}_{1}}=\dfrac{8}{1+\left( \dfrac{3}{25} \right)}=\dfrac{8\times 25}{28} \\
& {{h}_{1}}=\dfrac{50}{7} \\
\end{align}\]
Hence, Now we have;
\[{{h}_{1}}=\dfrac{50}{7},{{d}_{2}}=\dfrac{-3}{200}\]……………….. (9)
Now, coming to question we have to calculate
${{x}_{5}}={{h}_{10}}$
For ${{x}_{5}}$, we have first term of series ${{x}_{1}}=\dfrac{16}{5}$ and common difference ${{d}_{1}}=\dfrac{12}{5}$ from equation (8).
Hence, from equation (3), we have general formula for A.P., we get
$\begin{align}
& {{x}_{5}}={{x}_{1}}+4{{d}_{1}} \\
& {{x}_{5}}=\dfrac{16}{5}+4\times \dfrac{12}{5}=\dfrac{64}{5}...........\left( 10 \right) \\
\end{align}$
For ${{h}_{10}}$, we have series $\dfrac{1}{{{h}_{1}}},\dfrac{1}{{{h}_{2}}},.....,\dfrac{1}{{{h}_{n}}}$ in A.P and \[{{h}_{1}}=\dfrac{50}{7}\] and common difference \[{{d}_{2}}=\dfrac{-3}{200}\] from equation (9).
Using equation (5), we can write;
$\begin{align}
& \dfrac{1}{{{h}_{10}}}=\dfrac{1}{{{h}_{1}}}+9{{d}_{2}}=\dfrac{7}{50}+9\times \dfrac{-3}{200} \\
& \dfrac{1}{{{h}_{10}}}=\dfrac{7}{50}-\dfrac{27}{200}=\dfrac{28-27}{200} \\
& {{h}_{10}}=200.....................................\left( 11 \right) \\
\end{align}$
Now, ${{x}_{5}}.{{h}_{10}}$ can be calculated from equations (10) and (11), we get;
$\begin{align}
& {{x}_{5}}.{{h}_{10}}=\dfrac{64}{5}\times 200=64\times 40 \\
& {{x}_{5}}.{{h}_{10}}=2560 \\
\end{align}$
Hence, the answer is option (A).
Note: One can be easily confused with second series and can write general term for this series as
$\begin{align}
& {{T}_{n}}={{h}_{1}}+\left( n-1 \right)d \\
& Or \\
& \dfrac{1}{{{h}_{1}}}+\left( n-1 \right)\dfrac{1}{{{d}_{1}}} \\
\end{align}$
Which will be wrong and give the wrong solution. Correct general term for the second series is
${{T}_{n}}=\dfrac{1}{{{h}_{1}}}+\left( n-1 \right)d$.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Which of the following does not have a fundamental class 10 physics CBSE

State and prove the Pythagoras theorem-class-10-maths-CBSE

Differentiate between Food chain and Food web class 10 biology CBSE

State BPT theorem and prove it class 10 maths CBSE

A Gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

Write the difference between soap and detergent class 10 chemistry CBSE

