Answer
Verified
493.5k+ views
Hint: Use general term of AP, ${{T}_{n}}=a+\left( n-1 \right)d$ , where a is first term, d is common difference and n is number of terms. Find the first term and common difference of the given series to calculate ${{x}_{5}}\And {{h}_{10}}$.
Complete step-by-step answer:
We have $\left( {{x}_{1}},{{x}_{2}},.....,{{x}_{n}} \right)\text{ and }\left( \dfrac{1}{{{h}_{1}}},\dfrac{1}{{{h}_{2}}},.....,\dfrac{1}{{{h}_{n}}} \right)$ are two AP’s where,
${{x}_{3}}={{h}_{2}}=8$………………… (1)
${{x}_{8}}={{h}_{7}}=20$……………… (2)
We need to determine ${{x}_{5}}.{{h}_{10}}=?$
As we know general term of an A.P, where first term is ‘a’ and common difference is ‘d’
${{T}_{n}}=a+\left( n-1 \right)d$………………. (3)
Now, from equation (1), we have
${{x}_{3}}={{h}_{2}}=8$
From equation (3), we can calculate ${{x}_{3}}$ as;
Let $\left( {{x}_{1}},{{x}_{2}},.....,{{x}_{n}} \right)$ have common difference of ${{d}_{1}}$ then,
Hence,
$\begin{align}
& {{x}_{3}}={{x}_{1}}+\left( 3-1 \right){{d}_{1}} \\
& {{x}_{3}}={{x}_{1}}+2{{d}_{1}}=8 \\
\end{align}$ …………(4)
For ${{h}_{2}}$, we have given that $\dfrac{1}{{{h}_{1}}},\dfrac{1}{{{h}_{2}}},.....,\dfrac{1}{{{h}_{n}}}$are in AP, let common difference of this AP be ${{d}_{2}}$, therefore we can write
$\begin{align}
& \dfrac{1}{{{h}_{2}}}=\dfrac{1}{{{h}_{1}}}+\left( 2-1 \right){{d}_{2}} \\
& \dfrac{1}{{{h}_{2}}}=\dfrac{1}{{{h}_{1}}}+\dfrac{{{d}_{2}}}{1}=\dfrac{1+{{h}_{1}}{{d}_{2}}}{{{h}_{1}}} \\
& {{h}_{2}}=\dfrac{{{h}_{1}}}{{{h}_{1}}{{d}_{2}}+1}=8 \\
& {{h}_{1}}=8{{h}_{1}}{{d}_{2}}+8 \\
& {{h}_{1}}\left( 1-8{{d}_{2}} \right)=8 \\
\end{align}$
${{h}_{1}}=\dfrac{8}{1-8{{d}_{2}}}$…………………. (5)
Now, from the equation (2) we have
${{x}_{8}}={{h}_{7}}=20$
${{x}_{8}}$can be written by equation (3). As, we have ${{x}_{1}},{{x}_{2}},.....,{{x}_{n}}$are in AP with c.d.;
${{x}_{8}}={{x}_{1}}+\left( 8-1 \right){{d}_{1}}=20$
${{x}_{1}}+7{{d}_{1}}=20$……………….. (6)
For ${{h}_{7}}$ we have series $\dfrac{1}{{{h}_{1}}},\dfrac{1}{{{h}_{2}}},.....,\dfrac{1}{{{h}_{n}}}$in AP with $c.d={{d}_{2}}$ from there, we can write;
\[\begin{align}
& \dfrac{1}{{{h}_{7}}}=\dfrac{1}{{{h}_{1}}}+6{{d}_{2}} \\
& \dfrac{1}{{{h}_{7}}}=\dfrac{1+6{{d}_{2}}{{h}_{1}}}{{{h}_{1}}} \\
& {{h}_{7}}=\dfrac{{{h}_{1}}}{1+6{{d}_{2}}{{h}_{1}}}=20 \\
& {{h}_{1}}=20+120{{d}_{2}}{{h}_{1}} \\
\end{align}\]
\[{{h}_{1}}=\dfrac{20}{1-120{{d}_{2}}}\]…………………. (7)
Now, we can get ${{x}_{1}}\And {{d}_{1}}$ from equation (4) and (6) by solving them as follows;
Therefore, we have;
${{x}_{1}}+2{{d}_{1}}=8\And {{x}_{1}}+7{{d}_{1}}=20$
Subtracting both the equations, we get
\[\dfrac{\begin{matrix}
{{x}_{1}}+2{{d}_{1}}=8 \\
\begin{align}
& {{x}_{1}}+7{{d}_{1}}=20 \\
& - \\
\end{align} \\
\end{matrix}}{0-5{{d}_{1}}=-12}\]
Hence,${{d}_{1}}=\dfrac{12}{5}$
Now, for ${{x}_{1}}$, we have ${{x}_{1}}+2{{d}_{1}}=8$
$\begin{align}
& \because {{x}_{1}}+2\times \dfrac{12}{5}=8 \\
& {{x}_{1}}=8-\dfrac{24}{5}=\dfrac{16}{5} \\
\end{align}$
Hence, we get
${{x}_{1}}=\dfrac{16}{5},{{d}_{1}}=\dfrac{12}{5}$ ……………….. (8)
For ${{h}_{1}}\And {{d}_{2}}$, we have equations (5) and (7), we get
\[{{h}_{1}}=\dfrac{8}{1-8{{d}_{2}}}=\dfrac{20}{1-120{{d}_{2}}}\]
On simplifying above relation, we get;
\[\dfrac{2}{1-8{{d}_{2}}}=\dfrac{5}{1-120{{d}_{2}}}\]
On cross – multiplying, we get
$\begin{align}
& 2-240{{d}_{2}}=5-40{{d}_{2}} \\
& -3=200{{d}_{2}} \\
& {{d}_{2}}=\dfrac{-3}{200} \\
\end{align}$
Now, for calculating ${{h}_{1}}$, we have;
\[\begin{align}
& {{h}_{1}}=\dfrac{8}{1-8{{d}_{2}}}=\dfrac{8}{1-8\times \left( \dfrac{-3}{200} \right)} \\
& {{h}_{1}}=\dfrac{8}{1+\left( \dfrac{3}{25} \right)}=\dfrac{8\times 25}{28} \\
& {{h}_{1}}=\dfrac{50}{7} \\
\end{align}\]
Hence, Now we have;
\[{{h}_{1}}=\dfrac{50}{7},{{d}_{2}}=\dfrac{-3}{200}\]……………….. (9)
Now, coming to question we have to calculate
${{x}_{5}}={{h}_{10}}$
For ${{x}_{5}}$, we have first term of series ${{x}_{1}}=\dfrac{16}{5}$ and common difference ${{d}_{1}}=\dfrac{12}{5}$ from equation (8).
Hence, from equation (3), we have general formula for A.P., we get
$\begin{align}
& {{x}_{5}}={{x}_{1}}+4{{d}_{1}} \\
& {{x}_{5}}=\dfrac{16}{5}+4\times \dfrac{12}{5}=\dfrac{64}{5}...........\left( 10 \right) \\
\end{align}$
For ${{h}_{10}}$, we have series $\dfrac{1}{{{h}_{1}}},\dfrac{1}{{{h}_{2}}},.....,\dfrac{1}{{{h}_{n}}}$ in A.P and \[{{h}_{1}}=\dfrac{50}{7}\] and common difference \[{{d}_{2}}=\dfrac{-3}{200}\] from equation (9).
Using equation (5), we can write;
$\begin{align}
& \dfrac{1}{{{h}_{10}}}=\dfrac{1}{{{h}_{1}}}+9{{d}_{2}}=\dfrac{7}{50}+9\times \dfrac{-3}{200} \\
& \dfrac{1}{{{h}_{10}}}=\dfrac{7}{50}-\dfrac{27}{200}=\dfrac{28-27}{200} \\
& {{h}_{10}}=200.....................................\left( 11 \right) \\
\end{align}$
Now, ${{x}_{5}}.{{h}_{10}}$ can be calculated from equations (10) and (11), we get;
$\begin{align}
& {{x}_{5}}.{{h}_{10}}=\dfrac{64}{5}\times 200=64\times 40 \\
& {{x}_{5}}.{{h}_{10}}=2560 \\
\end{align}$
Hence, the answer is option (A).
Note: One can be easily confused with second series and can write general term for this series as
$\begin{align}
& {{T}_{n}}={{h}_{1}}+\left( n-1 \right)d \\
& Or \\
& \dfrac{1}{{{h}_{1}}}+\left( n-1 \right)\dfrac{1}{{{d}_{1}}} \\
\end{align}$
Which will be wrong and give the wrong solution. Correct general term for the second series is
${{T}_{n}}=\dfrac{1}{{{h}_{1}}}+\left( n-1 \right)d$.
Complete step-by-step answer:
We have $\left( {{x}_{1}},{{x}_{2}},.....,{{x}_{n}} \right)\text{ and }\left( \dfrac{1}{{{h}_{1}}},\dfrac{1}{{{h}_{2}}},.....,\dfrac{1}{{{h}_{n}}} \right)$ are two AP’s where,
${{x}_{3}}={{h}_{2}}=8$………………… (1)
${{x}_{8}}={{h}_{7}}=20$……………… (2)
We need to determine ${{x}_{5}}.{{h}_{10}}=?$
As we know general term of an A.P, where first term is ‘a’ and common difference is ‘d’
${{T}_{n}}=a+\left( n-1 \right)d$………………. (3)
Now, from equation (1), we have
${{x}_{3}}={{h}_{2}}=8$
From equation (3), we can calculate ${{x}_{3}}$ as;
Let $\left( {{x}_{1}},{{x}_{2}},.....,{{x}_{n}} \right)$ have common difference of ${{d}_{1}}$ then,
Hence,
$\begin{align}
& {{x}_{3}}={{x}_{1}}+\left( 3-1 \right){{d}_{1}} \\
& {{x}_{3}}={{x}_{1}}+2{{d}_{1}}=8 \\
\end{align}$ …………(4)
For ${{h}_{2}}$, we have given that $\dfrac{1}{{{h}_{1}}},\dfrac{1}{{{h}_{2}}},.....,\dfrac{1}{{{h}_{n}}}$are in AP, let common difference of this AP be ${{d}_{2}}$, therefore we can write
$\begin{align}
& \dfrac{1}{{{h}_{2}}}=\dfrac{1}{{{h}_{1}}}+\left( 2-1 \right){{d}_{2}} \\
& \dfrac{1}{{{h}_{2}}}=\dfrac{1}{{{h}_{1}}}+\dfrac{{{d}_{2}}}{1}=\dfrac{1+{{h}_{1}}{{d}_{2}}}{{{h}_{1}}} \\
& {{h}_{2}}=\dfrac{{{h}_{1}}}{{{h}_{1}}{{d}_{2}}+1}=8 \\
& {{h}_{1}}=8{{h}_{1}}{{d}_{2}}+8 \\
& {{h}_{1}}\left( 1-8{{d}_{2}} \right)=8 \\
\end{align}$
${{h}_{1}}=\dfrac{8}{1-8{{d}_{2}}}$…………………. (5)
Now, from the equation (2) we have
${{x}_{8}}={{h}_{7}}=20$
${{x}_{8}}$can be written by equation (3). As, we have ${{x}_{1}},{{x}_{2}},.....,{{x}_{n}}$are in AP with c.d.;
${{x}_{8}}={{x}_{1}}+\left( 8-1 \right){{d}_{1}}=20$
${{x}_{1}}+7{{d}_{1}}=20$……………….. (6)
For ${{h}_{7}}$ we have series $\dfrac{1}{{{h}_{1}}},\dfrac{1}{{{h}_{2}}},.....,\dfrac{1}{{{h}_{n}}}$in AP with $c.d={{d}_{2}}$ from there, we can write;
\[\begin{align}
& \dfrac{1}{{{h}_{7}}}=\dfrac{1}{{{h}_{1}}}+6{{d}_{2}} \\
& \dfrac{1}{{{h}_{7}}}=\dfrac{1+6{{d}_{2}}{{h}_{1}}}{{{h}_{1}}} \\
& {{h}_{7}}=\dfrac{{{h}_{1}}}{1+6{{d}_{2}}{{h}_{1}}}=20 \\
& {{h}_{1}}=20+120{{d}_{2}}{{h}_{1}} \\
\end{align}\]
\[{{h}_{1}}=\dfrac{20}{1-120{{d}_{2}}}\]…………………. (7)
Now, we can get ${{x}_{1}}\And {{d}_{1}}$ from equation (4) and (6) by solving them as follows;
Therefore, we have;
${{x}_{1}}+2{{d}_{1}}=8\And {{x}_{1}}+7{{d}_{1}}=20$
Subtracting both the equations, we get
\[\dfrac{\begin{matrix}
{{x}_{1}}+2{{d}_{1}}=8 \\
\begin{align}
& {{x}_{1}}+7{{d}_{1}}=20 \\
& - \\
\end{align} \\
\end{matrix}}{0-5{{d}_{1}}=-12}\]
Hence,${{d}_{1}}=\dfrac{12}{5}$
Now, for ${{x}_{1}}$, we have ${{x}_{1}}+2{{d}_{1}}=8$
$\begin{align}
& \because {{x}_{1}}+2\times \dfrac{12}{5}=8 \\
& {{x}_{1}}=8-\dfrac{24}{5}=\dfrac{16}{5} \\
\end{align}$
Hence, we get
${{x}_{1}}=\dfrac{16}{5},{{d}_{1}}=\dfrac{12}{5}$ ……………….. (8)
For ${{h}_{1}}\And {{d}_{2}}$, we have equations (5) and (7), we get
\[{{h}_{1}}=\dfrac{8}{1-8{{d}_{2}}}=\dfrac{20}{1-120{{d}_{2}}}\]
On simplifying above relation, we get;
\[\dfrac{2}{1-8{{d}_{2}}}=\dfrac{5}{1-120{{d}_{2}}}\]
On cross – multiplying, we get
$\begin{align}
& 2-240{{d}_{2}}=5-40{{d}_{2}} \\
& -3=200{{d}_{2}} \\
& {{d}_{2}}=\dfrac{-3}{200} \\
\end{align}$
Now, for calculating ${{h}_{1}}$, we have;
\[\begin{align}
& {{h}_{1}}=\dfrac{8}{1-8{{d}_{2}}}=\dfrac{8}{1-8\times \left( \dfrac{-3}{200} \right)} \\
& {{h}_{1}}=\dfrac{8}{1+\left( \dfrac{3}{25} \right)}=\dfrac{8\times 25}{28} \\
& {{h}_{1}}=\dfrac{50}{7} \\
\end{align}\]
Hence, Now we have;
\[{{h}_{1}}=\dfrac{50}{7},{{d}_{2}}=\dfrac{-3}{200}\]……………….. (9)
Now, coming to question we have to calculate
${{x}_{5}}={{h}_{10}}$
For ${{x}_{5}}$, we have first term of series ${{x}_{1}}=\dfrac{16}{5}$ and common difference ${{d}_{1}}=\dfrac{12}{5}$ from equation (8).
Hence, from equation (3), we have general formula for A.P., we get
$\begin{align}
& {{x}_{5}}={{x}_{1}}+4{{d}_{1}} \\
& {{x}_{5}}=\dfrac{16}{5}+4\times \dfrac{12}{5}=\dfrac{64}{5}...........\left( 10 \right) \\
\end{align}$
For ${{h}_{10}}$, we have series $\dfrac{1}{{{h}_{1}}},\dfrac{1}{{{h}_{2}}},.....,\dfrac{1}{{{h}_{n}}}$ in A.P and \[{{h}_{1}}=\dfrac{50}{7}\] and common difference \[{{d}_{2}}=\dfrac{-3}{200}\] from equation (9).
Using equation (5), we can write;
$\begin{align}
& \dfrac{1}{{{h}_{10}}}=\dfrac{1}{{{h}_{1}}}+9{{d}_{2}}=\dfrac{7}{50}+9\times \dfrac{-3}{200} \\
& \dfrac{1}{{{h}_{10}}}=\dfrac{7}{50}-\dfrac{27}{200}=\dfrac{28-27}{200} \\
& {{h}_{10}}=200.....................................\left( 11 \right) \\
\end{align}$
Now, ${{x}_{5}}.{{h}_{10}}$ can be calculated from equations (10) and (11), we get;
$\begin{align}
& {{x}_{5}}.{{h}_{10}}=\dfrac{64}{5}\times 200=64\times 40 \\
& {{x}_{5}}.{{h}_{10}}=2560 \\
\end{align}$
Hence, the answer is option (A).
Note: One can be easily confused with second series and can write general term for this series as
$\begin{align}
& {{T}_{n}}={{h}_{1}}+\left( n-1 \right)d \\
& Or \\
& \dfrac{1}{{{h}_{1}}}+\left( n-1 \right)\dfrac{1}{{{d}_{1}}} \\
\end{align}$
Which will be wrong and give the wrong solution. Correct general term for the second series is
${{T}_{n}}=\dfrac{1}{{{h}_{1}}}+\left( n-1 \right)d$.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Collect pictures stories poems and information about class 10 social studies CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE