Answer
Verified
494.7k+ views
Hint- Use the property of addition of multiple logarithm terms followed by converting that into a form of a progression to ease the simplification.
Its been given that for $x > 0$,
${\log _2}x + {\log _2}\left( {\sqrt x } \right) + {\log _2}\left( {^4\sqrt x } \right) + \log \left( {^8\sqrt x } \right) + ..................\infty = 4$
Now using the logarithm property that is $\log A + \log B + \log C......... = \log (ABC..............)$
We can write above expression as
${\log _2}(x\left( {\sqrt x } \right)\left( {^4\sqrt x } \right)\left( {^8\sqrt x } \right)..................\infty ) = 4$
Writing in terms of powers, we have
${\log _2}\left[ {x \times {x^{\dfrac{1}{2}}} \times {x^{\dfrac{1}{4}}} \times {x^{\dfrac{1}{8}}}.................\infty } \right] = 4$
Using property of power addition we have
${\log _2}\left[ {{x^{1 + \dfrac{1}{2} + \dfrac{1}{4} + \dfrac{1}{8} + ..............\infty }}} \right] = 4$
Now clearly the power of x is forming a Geometric Progression with first term as $1$ and common ratio as $\dfrac{1}{2}$ and also it is an $\infty $ GP.
We know that the sum of an infinite GP is $\dfrac{a}{{1 - r}}$ where $a$ is first term and $r$ is common ratio.
So, we have
${\log _2}{x^{\dfrac{1}{{1 - \left( {\dfrac{1}{2}} \right)}}}} = {\log _2}{x^2} = 4$
Now we have,
${\log _2}{x^2} = 4$
Using the property of logarithm that is ${\log _a}b = p \Rightarrow b = {a^p}$
We get ${x^2} = {2^4} = 16$
$\therefore x = \pm 4$
But since the domain of log is always a number greater than 0 hence $x$ can’t be equal to $-4$, so $x = 4$ is the only right answer.
Hence, option(c) is correct.
Note - In these types of problems, try to simplify the given expression using properties of logarithmic expressions. The simplification is followed by identifying some property of the infinite series i.e. geometric progression in this case and the rest is solved using G.P. formulas.
Its been given that for $x > 0$,
${\log _2}x + {\log _2}\left( {\sqrt x } \right) + {\log _2}\left( {^4\sqrt x } \right) + \log \left( {^8\sqrt x } \right) + ..................\infty = 4$
Now using the logarithm property that is $\log A + \log B + \log C......... = \log (ABC..............)$
We can write above expression as
${\log _2}(x\left( {\sqrt x } \right)\left( {^4\sqrt x } \right)\left( {^8\sqrt x } \right)..................\infty ) = 4$
Writing in terms of powers, we have
${\log _2}\left[ {x \times {x^{\dfrac{1}{2}}} \times {x^{\dfrac{1}{4}}} \times {x^{\dfrac{1}{8}}}.................\infty } \right] = 4$
Using property of power addition we have
${\log _2}\left[ {{x^{1 + \dfrac{1}{2} + \dfrac{1}{4} + \dfrac{1}{8} + ..............\infty }}} \right] = 4$
Now clearly the power of x is forming a Geometric Progression with first term as $1$ and common ratio as $\dfrac{1}{2}$ and also it is an $\infty $ GP.
We know that the sum of an infinite GP is $\dfrac{a}{{1 - r}}$ where $a$ is first term and $r$ is common ratio.
So, we have
${\log _2}{x^{\dfrac{1}{{1 - \left( {\dfrac{1}{2}} \right)}}}} = {\log _2}{x^2} = 4$
Now we have,
${\log _2}{x^2} = 4$
Using the property of logarithm that is ${\log _a}b = p \Rightarrow b = {a^p}$
We get ${x^2} = {2^4} = 16$
$\therefore x = \pm 4$
But since the domain of log is always a number greater than 0 hence $x$ can’t be equal to $-4$, so $x = 4$ is the only right answer.
Hence, option(c) is correct.
Note - In these types of problems, try to simplify the given expression using properties of logarithmic expressions. The simplification is followed by identifying some property of the infinite series i.e. geometric progression in this case and the rest is solved using G.P. formulas.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life