Answer

Verified

411k+ views

Hint- Use the property of addition of multiple logarithm terms followed by converting that into a form of a progression to ease the simplification.

Its been given that for $x > 0$,

${\log _2}x + {\log _2}\left( {\sqrt x } \right) + {\log _2}\left( {^4\sqrt x } \right) + \log \left( {^8\sqrt x } \right) + ..................\infty = 4$

Now using the logarithm property that is $\log A + \log B + \log C......... = \log (ABC..............)$

We can write above expression as

${\log _2}(x\left( {\sqrt x } \right)\left( {^4\sqrt x } \right)\left( {^8\sqrt x } \right)..................\infty ) = 4$

Writing in terms of powers, we have

${\log _2}\left[ {x \times {x^{\dfrac{1}{2}}} \times {x^{\dfrac{1}{4}}} \times {x^{\dfrac{1}{8}}}.................\infty } \right] = 4$

Using property of power addition we have

${\log _2}\left[ {{x^{1 + \dfrac{1}{2} + \dfrac{1}{4} + \dfrac{1}{8} + ..............\infty }}} \right] = 4$

Now clearly the power of x is forming a Geometric Progression with first term as $1$ and common ratio as $\dfrac{1}{2}$ and also it is an $\infty $ GP.

We know that the sum of an infinite GP is $\dfrac{a}{{1 - r}}$ where $a$ is first term and $r$ is common ratio.

So, we have

${\log _2}{x^{\dfrac{1}{{1 - \left( {\dfrac{1}{2}} \right)}}}} = {\log _2}{x^2} = 4$

Now we have,

${\log _2}{x^2} = 4$

Using the property of logarithm that is ${\log _a}b = p \Rightarrow b = {a^p}$

We get ${x^2} = {2^4} = 16$

$\therefore x = \pm 4$

But since the domain of log is always a number greater than 0 hence $x$ can’t be equal to $-4$, so $x = 4$ is the only right answer.

Hence, option(c) is correct.

Note - In these types of problems, try to simplify the given expression using properties of logarithmic expressions. The simplification is followed by identifying some property of the infinite series i.e. geometric progression in this case and the rest is solved using G.P. formulas.

Its been given that for $x > 0$,

${\log _2}x + {\log _2}\left( {\sqrt x } \right) + {\log _2}\left( {^4\sqrt x } \right) + \log \left( {^8\sqrt x } \right) + ..................\infty = 4$

Now using the logarithm property that is $\log A + \log B + \log C......... = \log (ABC..............)$

We can write above expression as

${\log _2}(x\left( {\sqrt x } \right)\left( {^4\sqrt x } \right)\left( {^8\sqrt x } \right)..................\infty ) = 4$

Writing in terms of powers, we have

${\log _2}\left[ {x \times {x^{\dfrac{1}{2}}} \times {x^{\dfrac{1}{4}}} \times {x^{\dfrac{1}{8}}}.................\infty } \right] = 4$

Using property of power addition we have

${\log _2}\left[ {{x^{1 + \dfrac{1}{2} + \dfrac{1}{4} + \dfrac{1}{8} + ..............\infty }}} \right] = 4$

Now clearly the power of x is forming a Geometric Progression with first term as $1$ and common ratio as $\dfrac{1}{2}$ and also it is an $\infty $ GP.

We know that the sum of an infinite GP is $\dfrac{a}{{1 - r}}$ where $a$ is first term and $r$ is common ratio.

So, we have

${\log _2}{x^{\dfrac{1}{{1 - \left( {\dfrac{1}{2}} \right)}}}} = {\log _2}{x^2} = 4$

Now we have,

${\log _2}{x^2} = 4$

Using the property of logarithm that is ${\log _a}b = p \Rightarrow b = {a^p}$

We get ${x^2} = {2^4} = 16$

$\therefore x = \pm 4$

But since the domain of log is always a number greater than 0 hence $x$ can’t be equal to $-4$, so $x = 4$ is the only right answer.

Hence, option(c) is correct.

Note - In these types of problems, try to simplify the given expression using properties of logarithmic expressions. The simplification is followed by identifying some property of the infinite series i.e. geometric progression in this case and the rest is solved using G.P. formulas.

Recently Updated Pages

Three beakers labelled as A B and C each containing 25 mL of water were taken A small amount of NaOH anhydrous CuSO4 and NaCl were added to the beakers A B and C respectively It was observed that there was an increase in the temperature of the solutions contained in beakers A and B whereas in case of beaker C the temperature of the solution falls Which one of the following statements isarecorrect i In beakers A and B exothermic process has occurred ii In beakers A and B endothermic process has occurred iii In beaker C exothermic process has occurred iv In beaker C endothermic process has occurred

The branch of science which deals with nature and natural class 10 physics CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Define absolute refractive index of a medium

Find out what do the algal bloom and redtides sign class 10 biology CBSE

Prove that the function fleft x right xn is continuous class 12 maths CBSE

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

What is the color of ferrous sulphate crystals? How does this color change after heating? Name the products formed on strongly heating ferrous sulphate crystals. What type of chemical reaction occurs in this type of change.

Write the difference between soap and detergent class 10 chemistry CBSE

Give 10 examples of unisexual and bisexual flowers

Differentiate between calcination and roasting class 11 chemistry CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is the difference between anaerobic aerobic respiration class 10 biology CBSE

a Why did Mendel choose pea plants for his experiments class 10 biology CBSE