
If $x > 0$ and ${\log _2}x + {\log _2}\left( {\sqrt x } \right) + {\log _2}\left( {^4\sqrt x } \right) + \log \left( {^8\sqrt x } \right) + ..................\infty = 4$, then $x$ is
(a) 2
(b) 3
(c) 4
(d) 5
Answer
607.5k+ views
Hint- Use the property of addition of multiple logarithm terms followed by converting that into a form of a progression to ease the simplification.
Its been given that for $x > 0$,
${\log _2}x + {\log _2}\left( {\sqrt x } \right) + {\log _2}\left( {^4\sqrt x } \right) + \log \left( {^8\sqrt x } \right) + ..................\infty = 4$
Now using the logarithm property that is $\log A + \log B + \log C......... = \log (ABC..............)$
We can write above expression as
${\log _2}(x\left( {\sqrt x } \right)\left( {^4\sqrt x } \right)\left( {^8\sqrt x } \right)..................\infty ) = 4$
Writing in terms of powers, we have
${\log _2}\left[ {x \times {x^{\dfrac{1}{2}}} \times {x^{\dfrac{1}{4}}} \times {x^{\dfrac{1}{8}}}.................\infty } \right] = 4$
Using property of power addition we have
${\log _2}\left[ {{x^{1 + \dfrac{1}{2} + \dfrac{1}{4} + \dfrac{1}{8} + ..............\infty }}} \right] = 4$
Now clearly the power of x is forming a Geometric Progression with first term as $1$ and common ratio as $\dfrac{1}{2}$ and also it is an $\infty $ GP.
We know that the sum of an infinite GP is $\dfrac{a}{{1 - r}}$ where $a$ is first term and $r$ is common ratio.
So, we have
${\log _2}{x^{\dfrac{1}{{1 - \left( {\dfrac{1}{2}} \right)}}}} = {\log _2}{x^2} = 4$
Now we have,
${\log _2}{x^2} = 4$
Using the property of logarithm that is ${\log _a}b = p \Rightarrow b = {a^p}$
We get ${x^2} = {2^4} = 16$
$\therefore x = \pm 4$
But since the domain of log is always a number greater than 0 hence $x$ can’t be equal to $-4$, so $x = 4$ is the only right answer.
Hence, option(c) is correct.
Note - In these types of problems, try to simplify the given expression using properties of logarithmic expressions. The simplification is followed by identifying some property of the infinite series i.e. geometric progression in this case and the rest is solved using G.P. formulas.
Its been given that for $x > 0$,
${\log _2}x + {\log _2}\left( {\sqrt x } \right) + {\log _2}\left( {^4\sqrt x } \right) + \log \left( {^8\sqrt x } \right) + ..................\infty = 4$
Now using the logarithm property that is $\log A + \log B + \log C......... = \log (ABC..............)$
We can write above expression as
${\log _2}(x\left( {\sqrt x } \right)\left( {^4\sqrt x } \right)\left( {^8\sqrt x } \right)..................\infty ) = 4$
Writing in terms of powers, we have
${\log _2}\left[ {x \times {x^{\dfrac{1}{2}}} \times {x^{\dfrac{1}{4}}} \times {x^{\dfrac{1}{8}}}.................\infty } \right] = 4$
Using property of power addition we have
${\log _2}\left[ {{x^{1 + \dfrac{1}{2} + \dfrac{1}{4} + \dfrac{1}{8} + ..............\infty }}} \right] = 4$
Now clearly the power of x is forming a Geometric Progression with first term as $1$ and common ratio as $\dfrac{1}{2}$ and also it is an $\infty $ GP.
We know that the sum of an infinite GP is $\dfrac{a}{{1 - r}}$ where $a$ is first term and $r$ is common ratio.
So, we have
${\log _2}{x^{\dfrac{1}{{1 - \left( {\dfrac{1}{2}} \right)}}}} = {\log _2}{x^2} = 4$
Now we have,
${\log _2}{x^2} = 4$
Using the property of logarithm that is ${\log _a}b = p \Rightarrow b = {a^p}$
We get ${x^2} = {2^4} = 16$
$\therefore x = \pm 4$
But since the domain of log is always a number greater than 0 hence $x$ can’t be equal to $-4$, so $x = 4$ is the only right answer.
Hence, option(c) is correct.
Note - In these types of problems, try to simplify the given expression using properties of logarithmic expressions. The simplification is followed by identifying some property of the infinite series i.e. geometric progression in this case and the rest is solved using G.P. formulas.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

