Answer
Verified
462.9k+ views
Hint: Remainder theorem is used to determine the remainder when two polynomials are given in the question for the division. The remainder theorem states that when a polynomial\[g\left( x \right)\] is divided by a linear polynomial, \[\left( {x - a} \right)\] then we get the remainder as \[g(a)\]and quotient as $q(x)$. The remainder is an integer that is left behind when a dividend is divided by the divisor. This theorem is applicable only when the polynomial is divided by a linear polynomial. A linear polynomial is generally represented as \[f\left( x \right) = ax + b\]where \[b\] is the constant term, whereas polynomial is the expression which consists of variables and coefficients having the operations of addition, multiplication, subtraction, and exponent. A polynomial function in degree n can be written as \[g(x) = {a_n}{x^n} + {a_{n - 1}}{x^{n - 1}} + {a_{n - 2}}{x^{n - 2}} + ........... + {a_2}{x^2} + {a_1}{x^1} + {a_0}\].
Another method to find the remainder is by dividing the dividend by the divisor, which is the general method to find the remainder, \[{\text{R = }}\dfrac{{{\text{dividend}}}}{{{\text{divisor}}}}\]
Complete step by step solution: Here \[{x^4} - {a^2}{x^2} + 3x - 6a\] is the dividend to which number is to be divided and \[x + a\] is the divisor by which the number is divided.
Now equate the divisor, which is a linear polynomial with \[0\] hence we get,
\[
x + a = 0 \\
x = - a \\
\]
So we can conclude when the polynomial \[f\left( x \right) = {x^4} - {a^2}{x^2} + 3x - 6a\] is divided by the linear polynomial, \[x = - a\]we get the remainder\[f\left( { - a} \right)\],
\[
f\left( x \right) = {x^4} - {a^2}{x^2} + 3x - 6a \\
f\left( { - a} \right) = {\left( { - a} \right)^4} - {a^2}{\left( { - a} \right)^2} + 3\left( { - a} \right) - 6a \\
= {a^4} - {a^4} - 3a - 6a \\
= - 9a \\
\]
We know it \[\left( {x + a} \right)\] is the factor of \[f\left( x \right)\]then we can write \[f\left( { - a} \right) = 0\] ; hence we get
\[
f\left( { - a} \right) = 0 \\
- 9a = 0 \\
a = 0 \\
\]
So the value of a is 0.
Option A is correct.
Note: Before finding the remainder, check whether the divisor is a linear polynomial; otherwise, the division is not possible. Another method to find the remainder is by dividing the dividend by the divisor by a long division method, which includes more calculations, and the chances of getting the error are more.
Another method to find the remainder is by dividing the dividend by the divisor, which is the general method to find the remainder, \[{\text{R = }}\dfrac{{{\text{dividend}}}}{{{\text{divisor}}}}\]
Complete step by step solution: Here \[{x^4} - {a^2}{x^2} + 3x - 6a\] is the dividend to which number is to be divided and \[x + a\] is the divisor by which the number is divided.
Now equate the divisor, which is a linear polynomial with \[0\] hence we get,
\[
x + a = 0 \\
x = - a \\
\]
So we can conclude when the polynomial \[f\left( x \right) = {x^4} - {a^2}{x^2} + 3x - 6a\] is divided by the linear polynomial, \[x = - a\]we get the remainder\[f\left( { - a} \right)\],
\[
f\left( x \right) = {x^4} - {a^2}{x^2} + 3x - 6a \\
f\left( { - a} \right) = {\left( { - a} \right)^4} - {a^2}{\left( { - a} \right)^2} + 3\left( { - a} \right) - 6a \\
= {a^4} - {a^4} - 3a - 6a \\
= - 9a \\
\]
We know it \[\left( {x + a} \right)\] is the factor of \[f\left( x \right)\]then we can write \[f\left( { - a} \right) = 0\] ; hence we get
\[
f\left( { - a} \right) = 0 \\
- 9a = 0 \\
a = 0 \\
\]
So the value of a is 0.
Option A is correct.
Note: Before finding the remainder, check whether the divisor is a linear polynomial; otherwise, the division is not possible. Another method to find the remainder is by dividing the dividend by the divisor by a long division method, which includes more calculations, and the chances of getting the error are more.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE