
If two irrational number are given as a = $\dfrac{{\sqrt 3 - \sqrt 2 }}{{\sqrt 3 + \sqrt 2 }}$ and b = $\dfrac{{\sqrt 3 + \sqrt 2 }}{{\sqrt 3 - \sqrt 2 }}$, If value of a + b -5ab is -4$\sqrt {\text{m}} $+ 5 then find m.
Answer
602.7k+ views
Hint:- Take LCM while solving the equation and simplify before equating. Equate irrational terms of both sides.
Complete step-by-step solution -
Given, a = $\dfrac{{\sqrt 3 - \sqrt 2 }}{{\sqrt 3 + \sqrt 2 }}$ and b = $\dfrac{{\sqrt 3 + \sqrt 2 }}{{\sqrt 3 - \sqrt 2 }}$ and,
a + b -5ab = -4$\sqrt {\text{m}} $+ 5
Putting the values of a and b in above equation
$\dfrac{{\sqrt 3 - \sqrt 2 }}{{\sqrt 3 + \sqrt 2 }}$ + $\dfrac{{\sqrt 3 + \sqrt 2 }}{{\sqrt 3 - \sqrt 2 }}$ - 5 $\left( {\dfrac{{\sqrt 3 - \sqrt 2 }}{{\sqrt 3 + \sqrt 2 }}} \right)$$\left( {\dfrac{{\sqrt 3 + \sqrt 2 }}{{\sqrt 3 - \sqrt 2 }}} \right)$ = -4$\sqrt {\text{m}} $+ 5
Taking L.C.M. , we get
$\dfrac{{{{\left( {\sqrt 3 - \sqrt 2 } \right)}^2} + {{\left( {\sqrt 3 + \sqrt 2 } \right)}^2} - 5\left( {\sqrt 3 - \sqrt 2 } \right)\left( {\sqrt 3 + \sqrt 2 } \right)}}{{\left( {\sqrt 3 - \sqrt 2 } \right)\left( {\sqrt 3 + \sqrt 2 } \right)}}$= -4$\sqrt {\text{m}} $+ 5
Using the algebraic identities ${{\text{(a + b)}}^2}{\text{ = }}{{\text{a}}^2}{\text{ + }}{{\text{b}}^2}{\text{ + 2ab }}$and ${{\text{(a - b)}}^2}{\text{ = }}{{\text{a}}^2}{\text{ + }}{{\text{b}}^2}{\text{ - 2ab }}$, we get
$\dfrac{{\left( {3 + 2 - 2\sqrt 6 } \right) + \left( {3 + 2 + 2\sqrt 6 } \right) - 5\left( {\sqrt 3 - \sqrt 2 } \right)\left( {\sqrt 3 + \sqrt 2 } \right)}}{{\left( {\sqrt 3 - \sqrt 2 } \right)\left( {\sqrt 3 + \sqrt 2 } \right)}}$= -4$\sqrt {\text{m}} $+ 5
Simplifying and using another algebraic identity $\left( {{\text{a + b}}} \right)\left( {{\text{a - b}}} \right) = {{\text{a}}^2}{\text{ - }}{{\text{b}}^2}$
$\dfrac{{10 - 5\left( {3 - 2} \right)}}{{\left( {3 - 2} \right)}}$= -4$\sqrt {\text{m}} $+ 5
$5$= -4$\sqrt {\text{m}} $+ 5
-4$\sqrt {\text{m}} $= 0
$\sqrt {\text{m}} $=0
m = 0.
Hence, m = 0.
Note:- In these types of questions, we need to simplify and apply all possible algebraic identity. The identity $\left( {{\text{a + b}}} \right)\left( {{\text{a - b}}} \right) = {{\text{a}}^2}{\text{ - }}{{\text{b}}^2}$ is very helpful in simplification.
Complete step-by-step solution -
Given, a = $\dfrac{{\sqrt 3 - \sqrt 2 }}{{\sqrt 3 + \sqrt 2 }}$ and b = $\dfrac{{\sqrt 3 + \sqrt 2 }}{{\sqrt 3 - \sqrt 2 }}$ and,
a + b -5ab = -4$\sqrt {\text{m}} $+ 5
Putting the values of a and b in above equation
$\dfrac{{\sqrt 3 - \sqrt 2 }}{{\sqrt 3 + \sqrt 2 }}$ + $\dfrac{{\sqrt 3 + \sqrt 2 }}{{\sqrt 3 - \sqrt 2 }}$ - 5 $\left( {\dfrac{{\sqrt 3 - \sqrt 2 }}{{\sqrt 3 + \sqrt 2 }}} \right)$$\left( {\dfrac{{\sqrt 3 + \sqrt 2 }}{{\sqrt 3 - \sqrt 2 }}} \right)$ = -4$\sqrt {\text{m}} $+ 5
Taking L.C.M. , we get
$\dfrac{{{{\left( {\sqrt 3 - \sqrt 2 } \right)}^2} + {{\left( {\sqrt 3 + \sqrt 2 } \right)}^2} - 5\left( {\sqrt 3 - \sqrt 2 } \right)\left( {\sqrt 3 + \sqrt 2 } \right)}}{{\left( {\sqrt 3 - \sqrt 2 } \right)\left( {\sqrt 3 + \sqrt 2 } \right)}}$= -4$\sqrt {\text{m}} $+ 5
Using the algebraic identities ${{\text{(a + b)}}^2}{\text{ = }}{{\text{a}}^2}{\text{ + }}{{\text{b}}^2}{\text{ + 2ab }}$and ${{\text{(a - b)}}^2}{\text{ = }}{{\text{a}}^2}{\text{ + }}{{\text{b}}^2}{\text{ - 2ab }}$, we get
$\dfrac{{\left( {3 + 2 - 2\sqrt 6 } \right) + \left( {3 + 2 + 2\sqrt 6 } \right) - 5\left( {\sqrt 3 - \sqrt 2 } \right)\left( {\sqrt 3 + \sqrt 2 } \right)}}{{\left( {\sqrt 3 - \sqrt 2 } \right)\left( {\sqrt 3 + \sqrt 2 } \right)}}$= -4$\sqrt {\text{m}} $+ 5
Simplifying and using another algebraic identity $\left( {{\text{a + b}}} \right)\left( {{\text{a - b}}} \right) = {{\text{a}}^2}{\text{ - }}{{\text{b}}^2}$
$\dfrac{{10 - 5\left( {3 - 2} \right)}}{{\left( {3 - 2} \right)}}$= -4$\sqrt {\text{m}} $+ 5
$5$= -4$\sqrt {\text{m}} $+ 5
-4$\sqrt {\text{m}} $= 0
$\sqrt {\text{m}} $=0
m = 0.
Hence, m = 0.
Note:- In these types of questions, we need to simplify and apply all possible algebraic identity. The identity $\left( {{\text{a + b}}} \right)\left( {{\text{a - b}}} \right) = {{\text{a}}^2}{\text{ - }}{{\text{b}}^2}$ is very helpful in simplification.
Recently Updated Pages
In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

In cricket, what is a "tail-ender"?

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Write an application to the principal requesting five class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Who Won 36 Oscar Awards? Record Holder Revealed

