
If two irrational number are given as a = $\dfrac{{\sqrt 3 - \sqrt 2 }}{{\sqrt 3 + \sqrt 2 }}$ and b = $\dfrac{{\sqrt 3 + \sqrt 2 }}{{\sqrt 3 - \sqrt 2 }}$, If value of a + b -5ab is -4$\sqrt {\text{m}} $+ 5 then find m.
Answer
595.8k+ views
Hint:- Take LCM while solving the equation and simplify before equating. Equate irrational terms of both sides.
Complete step-by-step solution -
Given, a = $\dfrac{{\sqrt 3 - \sqrt 2 }}{{\sqrt 3 + \sqrt 2 }}$ and b = $\dfrac{{\sqrt 3 + \sqrt 2 }}{{\sqrt 3 - \sqrt 2 }}$ and,
a + b -5ab = -4$\sqrt {\text{m}} $+ 5
Putting the values of a and b in above equation
$\dfrac{{\sqrt 3 - \sqrt 2 }}{{\sqrt 3 + \sqrt 2 }}$ + $\dfrac{{\sqrt 3 + \sqrt 2 }}{{\sqrt 3 - \sqrt 2 }}$ - 5 $\left( {\dfrac{{\sqrt 3 - \sqrt 2 }}{{\sqrt 3 + \sqrt 2 }}} \right)$$\left( {\dfrac{{\sqrt 3 + \sqrt 2 }}{{\sqrt 3 - \sqrt 2 }}} \right)$ = -4$\sqrt {\text{m}} $+ 5
Taking L.C.M. , we get
$\dfrac{{{{\left( {\sqrt 3 - \sqrt 2 } \right)}^2} + {{\left( {\sqrt 3 + \sqrt 2 } \right)}^2} - 5\left( {\sqrt 3 - \sqrt 2 } \right)\left( {\sqrt 3 + \sqrt 2 } \right)}}{{\left( {\sqrt 3 - \sqrt 2 } \right)\left( {\sqrt 3 + \sqrt 2 } \right)}}$= -4$\sqrt {\text{m}} $+ 5
Using the algebraic identities ${{\text{(a + b)}}^2}{\text{ = }}{{\text{a}}^2}{\text{ + }}{{\text{b}}^2}{\text{ + 2ab }}$and ${{\text{(a - b)}}^2}{\text{ = }}{{\text{a}}^2}{\text{ + }}{{\text{b}}^2}{\text{ - 2ab }}$, we get
$\dfrac{{\left( {3 + 2 - 2\sqrt 6 } \right) + \left( {3 + 2 + 2\sqrt 6 } \right) - 5\left( {\sqrt 3 - \sqrt 2 } \right)\left( {\sqrt 3 + \sqrt 2 } \right)}}{{\left( {\sqrt 3 - \sqrt 2 } \right)\left( {\sqrt 3 + \sqrt 2 } \right)}}$= -4$\sqrt {\text{m}} $+ 5
Simplifying and using another algebraic identity $\left( {{\text{a + b}}} \right)\left( {{\text{a - b}}} \right) = {{\text{a}}^2}{\text{ - }}{{\text{b}}^2}$
$\dfrac{{10 - 5\left( {3 - 2} \right)}}{{\left( {3 - 2} \right)}}$= -4$\sqrt {\text{m}} $+ 5
$5$= -4$\sqrt {\text{m}} $+ 5
-4$\sqrt {\text{m}} $= 0
$\sqrt {\text{m}} $=0
m = 0.
Hence, m = 0.
Note:- In these types of questions, we need to simplify and apply all possible algebraic identity. The identity $\left( {{\text{a + b}}} \right)\left( {{\text{a - b}}} \right) = {{\text{a}}^2}{\text{ - }}{{\text{b}}^2}$ is very helpful in simplification.
Complete step-by-step solution -
Given, a = $\dfrac{{\sqrt 3 - \sqrt 2 }}{{\sqrt 3 + \sqrt 2 }}$ and b = $\dfrac{{\sqrt 3 + \sqrt 2 }}{{\sqrt 3 - \sqrt 2 }}$ and,
a + b -5ab = -4$\sqrt {\text{m}} $+ 5
Putting the values of a and b in above equation
$\dfrac{{\sqrt 3 - \sqrt 2 }}{{\sqrt 3 + \sqrt 2 }}$ + $\dfrac{{\sqrt 3 + \sqrt 2 }}{{\sqrt 3 - \sqrt 2 }}$ - 5 $\left( {\dfrac{{\sqrt 3 - \sqrt 2 }}{{\sqrt 3 + \sqrt 2 }}} \right)$$\left( {\dfrac{{\sqrt 3 + \sqrt 2 }}{{\sqrt 3 - \sqrt 2 }}} \right)$ = -4$\sqrt {\text{m}} $+ 5
Taking L.C.M. , we get
$\dfrac{{{{\left( {\sqrt 3 - \sqrt 2 } \right)}^2} + {{\left( {\sqrt 3 + \sqrt 2 } \right)}^2} - 5\left( {\sqrt 3 - \sqrt 2 } \right)\left( {\sqrt 3 + \sqrt 2 } \right)}}{{\left( {\sqrt 3 - \sqrt 2 } \right)\left( {\sqrt 3 + \sqrt 2 } \right)}}$= -4$\sqrt {\text{m}} $+ 5
Using the algebraic identities ${{\text{(a + b)}}^2}{\text{ = }}{{\text{a}}^2}{\text{ + }}{{\text{b}}^2}{\text{ + 2ab }}$and ${{\text{(a - b)}}^2}{\text{ = }}{{\text{a}}^2}{\text{ + }}{{\text{b}}^2}{\text{ - 2ab }}$, we get
$\dfrac{{\left( {3 + 2 - 2\sqrt 6 } \right) + \left( {3 + 2 + 2\sqrt 6 } \right) - 5\left( {\sqrt 3 - \sqrt 2 } \right)\left( {\sqrt 3 + \sqrt 2 } \right)}}{{\left( {\sqrt 3 - \sqrt 2 } \right)\left( {\sqrt 3 + \sqrt 2 } \right)}}$= -4$\sqrt {\text{m}} $+ 5
Simplifying and using another algebraic identity $\left( {{\text{a + b}}} \right)\left( {{\text{a - b}}} \right) = {{\text{a}}^2}{\text{ - }}{{\text{b}}^2}$
$\dfrac{{10 - 5\left( {3 - 2} \right)}}{{\left( {3 - 2} \right)}}$= -4$\sqrt {\text{m}} $+ 5
$5$= -4$\sqrt {\text{m}} $+ 5
-4$\sqrt {\text{m}} $= 0
$\sqrt {\text{m}} $=0
m = 0.
Hence, m = 0.
Note:- In these types of questions, we need to simplify and apply all possible algebraic identity. The identity $\left( {{\text{a + b}}} \right)\left( {{\text{a - b}}} \right) = {{\text{a}}^2}{\text{ - }}{{\text{b}}^2}$ is very helpful in simplification.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Who composed the song Vande Mataram A RabindraNath class 10 social science CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The revolutionary who died after 63 days of the hunger class 10 social science CBSE

The slogan of Bande Mataram was first adopted during class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

