If two irrational number are given as a = $\dfrac{{\sqrt 3 - \sqrt 2 }}{{\sqrt 3 + \sqrt 2 }}$ and b = $\dfrac{{\sqrt 3 + \sqrt 2 }}{{\sqrt 3 - \sqrt 2 }}$, If value of a + b -5ab is -4$\sqrt {\text{m}} $+ 5 then find m.
Last updated date: 25th Mar 2023
•
Total views: 308.1k
•
Views today: 6.87k
Answer
308.1k+ views
Hint:- Take LCM while solving the equation and simplify before equating. Equate irrational terms of both sides.
Complete step-by-step solution -
Given, a = $\dfrac{{\sqrt 3 - \sqrt 2 }}{{\sqrt 3 + \sqrt 2 }}$ and b = $\dfrac{{\sqrt 3 + \sqrt 2 }}{{\sqrt 3 - \sqrt 2 }}$ and,
a + b -5ab = -4$\sqrt {\text{m}} $+ 5
Putting the values of a and b in above equation
$\dfrac{{\sqrt 3 - \sqrt 2 }}{{\sqrt 3 + \sqrt 2 }}$ + $\dfrac{{\sqrt 3 + \sqrt 2 }}{{\sqrt 3 - \sqrt 2 }}$ - 5 $\left( {\dfrac{{\sqrt 3 - \sqrt 2 }}{{\sqrt 3 + \sqrt 2 }}} \right)$$\left( {\dfrac{{\sqrt 3 + \sqrt 2 }}{{\sqrt 3 - \sqrt 2 }}} \right)$ = -4$\sqrt {\text{m}} $+ 5
Taking L.C.M. , we get
$\dfrac{{{{\left( {\sqrt 3 - \sqrt 2 } \right)}^2} + {{\left( {\sqrt 3 + \sqrt 2 } \right)}^2} - 5\left( {\sqrt 3 - \sqrt 2 } \right)\left( {\sqrt 3 + \sqrt 2 } \right)}}{{\left( {\sqrt 3 - \sqrt 2 } \right)\left( {\sqrt 3 + \sqrt 2 } \right)}}$= -4$\sqrt {\text{m}} $+ 5
Using the algebraic identities ${{\text{(a + b)}}^2}{\text{ = }}{{\text{a}}^2}{\text{ + }}{{\text{b}}^2}{\text{ + 2ab }}$and ${{\text{(a - b)}}^2}{\text{ = }}{{\text{a}}^2}{\text{ + }}{{\text{b}}^2}{\text{ - 2ab }}$, we get
$\dfrac{{\left( {3 + 2 - 2\sqrt 6 } \right) + \left( {3 + 2 + 2\sqrt 6 } \right) - 5\left( {\sqrt 3 - \sqrt 2 } \right)\left( {\sqrt 3 + \sqrt 2 } \right)}}{{\left( {\sqrt 3 - \sqrt 2 } \right)\left( {\sqrt 3 + \sqrt 2 } \right)}}$= -4$\sqrt {\text{m}} $+ 5
Simplifying and using another algebraic identity $\left( {{\text{a + b}}} \right)\left( {{\text{a - b}}} \right) = {{\text{a}}^2}{\text{ - }}{{\text{b}}^2}$
$\dfrac{{10 - 5\left( {3 - 2} \right)}}{{\left( {3 - 2} \right)}}$= -4$\sqrt {\text{m}} $+ 5
$5$= -4$\sqrt {\text{m}} $+ 5
-4$\sqrt {\text{m}} $= 0
$\sqrt {\text{m}} $=0
m = 0.
Hence, m = 0.
Note:- In these types of questions, we need to simplify and apply all possible algebraic identity. The identity $\left( {{\text{a + b}}} \right)\left( {{\text{a - b}}} \right) = {{\text{a}}^2}{\text{ - }}{{\text{b}}^2}$ is very helpful in simplification.
Complete step-by-step solution -
Given, a = $\dfrac{{\sqrt 3 - \sqrt 2 }}{{\sqrt 3 + \sqrt 2 }}$ and b = $\dfrac{{\sqrt 3 + \sqrt 2 }}{{\sqrt 3 - \sqrt 2 }}$ and,
a + b -5ab = -4$\sqrt {\text{m}} $+ 5
Putting the values of a and b in above equation
$\dfrac{{\sqrt 3 - \sqrt 2 }}{{\sqrt 3 + \sqrt 2 }}$ + $\dfrac{{\sqrt 3 + \sqrt 2 }}{{\sqrt 3 - \sqrt 2 }}$ - 5 $\left( {\dfrac{{\sqrt 3 - \sqrt 2 }}{{\sqrt 3 + \sqrt 2 }}} \right)$$\left( {\dfrac{{\sqrt 3 + \sqrt 2 }}{{\sqrt 3 - \sqrt 2 }}} \right)$ = -4$\sqrt {\text{m}} $+ 5
Taking L.C.M. , we get
$\dfrac{{{{\left( {\sqrt 3 - \sqrt 2 } \right)}^2} + {{\left( {\sqrt 3 + \sqrt 2 } \right)}^2} - 5\left( {\sqrt 3 - \sqrt 2 } \right)\left( {\sqrt 3 + \sqrt 2 } \right)}}{{\left( {\sqrt 3 - \sqrt 2 } \right)\left( {\sqrt 3 + \sqrt 2 } \right)}}$= -4$\sqrt {\text{m}} $+ 5
Using the algebraic identities ${{\text{(a + b)}}^2}{\text{ = }}{{\text{a}}^2}{\text{ + }}{{\text{b}}^2}{\text{ + 2ab }}$and ${{\text{(a - b)}}^2}{\text{ = }}{{\text{a}}^2}{\text{ + }}{{\text{b}}^2}{\text{ - 2ab }}$, we get
$\dfrac{{\left( {3 + 2 - 2\sqrt 6 } \right) + \left( {3 + 2 + 2\sqrt 6 } \right) - 5\left( {\sqrt 3 - \sqrt 2 } \right)\left( {\sqrt 3 + \sqrt 2 } \right)}}{{\left( {\sqrt 3 - \sqrt 2 } \right)\left( {\sqrt 3 + \sqrt 2 } \right)}}$= -4$\sqrt {\text{m}} $+ 5
Simplifying and using another algebraic identity $\left( {{\text{a + b}}} \right)\left( {{\text{a - b}}} \right) = {{\text{a}}^2}{\text{ - }}{{\text{b}}^2}$
$\dfrac{{10 - 5\left( {3 - 2} \right)}}{{\left( {3 - 2} \right)}}$= -4$\sqrt {\text{m}} $+ 5
$5$= -4$\sqrt {\text{m}} $+ 5
-4$\sqrt {\text{m}} $= 0
$\sqrt {\text{m}} $=0
m = 0.
Hence, m = 0.
Note:- In these types of questions, we need to simplify and apply all possible algebraic identity. The identity $\left( {{\text{a + b}}} \right)\left( {{\text{a - b}}} \right) = {{\text{a}}^2}{\text{ - }}{{\text{b}}^2}$ is very helpful in simplification.
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE
